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ABSTRACT
The detection of synthetic anabolic steroid doping continues to be a
challenge for laboratories and anti-doping organizations alike. Profiling
steroid use for individual athletes is rapidly becoming a valuable tool in this
endeavor. Population based studies have been used by the World Anti-
Doping Agency (WADA) to establish critical limits for various steroid
concentrations and ratios. In addition, individual profiling is increasingly
being utilized as a more precise and consistent tool for monitoring single
athletes and catching errant behavior in smaller populations. The objective
of this research is to use retrospective collected steroid data from the
National Football League (NFL) and develop an adaptive Bayesian model (or
known-sigma model) that will be used to evaluate longitudinal steroid
profiles of individual athletes. In addition, a second model (the Gibbs
sampling algorithm) will also be developed utilizing a Monte Carlo Markov
Chain algorithm as a comparator based on the premise that there still exists
large biological variability even in the NFL population. The database consists
of over 17,000 samples from nearly 3,100 individual players. In addition,
there are more than 600 players with 10 or more tests, which provide a large
sample set suitable for individual longitudinal profiling. The two Bayesian
approaches model corrected testosterone/epitestosterone concentration
patterns, which is a key indicator of synthetic anabolic steroid abuse. Two

athletes are modeled for this study: one athlete that has always tested



negative and one athlete that had a positive test occurrence. Both models are
successful profiling each individual, but the Gibbs sampling procedure is the
most accurate model since it treats the first initial tests of an athlete with
very little precision and certainty, which is expected given the unknown

physiological variations within the NFL population.
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CHAPTER 1

INTRODUCTION

Introduction
Enhancing one’s performance and giving oneself a competitive advantage is
as old as evolution itself. Therefore, athletes that introduce artificial
substances into their systems in order to give themselves a competitive
advantage are very much a common problem in today’s competitive sports.
For years health professionals have noted the physical and mental long-term
consequences of using artificial steroid inducements to enhance athletic
performance, yet steroid-doping still persists in both amateur and
professional athletics alike. The consumer base demands statistical
performance, and steroids represent a productive input that can enhance
performance at relatively little cost. Therefore, the motivation for steroid
abuse is prevalent and the consequences seem minimal if the player is
caught. Many athletic organizations have mandated steroid testing for all
players within their respective organizations in order to level the playing
field for all athletes and base performance strictly on skill and hard work.
Recent empirical studies suggest that punishment in some form deters
negative behavior even if market forces only reward output.! In the case of
professional athletes, the ramifications if caught doping can range from

censure to even expulsion and the financial impact can be great since
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endorsements are usually lost and public-presence is minimized. In any case,
athletes will continuously adopt newer methods that enhance athletic
performance and are undetectable using standard steroid-doping test
protocols.

One subset of compounds used for performance enhancement is
synthetic anabolic steroids, which metabolically mimic endogenous anabolic
steroids that are naturally produced in the human body. By their very
nature, synthetic anabolic steroids are difficult to identify in an analytical test
setting due to three factors: first, they show up in very small quantities,
usually in the range of ng/mL; second, synthetic anabolic steroids mimic the
structural and chemical characteristic of endogenous anabolic steroids which
are byproducts of natural biochemical pathways within the human body and
can vary widely based on the physical and genetic characteristics of the
tested individual; and, finally, human characteristics such as weight, age,
general health, genetics, and even the time of day all play a role with
metabolic buildup and breakdown of various endogenous anabolic steroids,
especially testosterone?. The difficulty with such testing is to take a general
rule and apply it to a large group of individuals while securing uniformity
and fairness within the mandated requirements advocated by specific
sporting organizations and anti-doping agencies alike; all, of which, require
censoring of athletes who are caught doping. Sota et al has built a
preliminary statistical model under controlled conditions in order to

highlight testosterone doping, focusing on corrected testosterone to
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epitestosterone ratios.3 His test population consisted of northern European
men under controlled conditions in which certain individuals were given
testosterone directly in order to monitor their longitudinal T/E ratios. The
objective of his research, as well as the research in which this current paper
is based, is to build a model using a Bayesian approach that is unique to the
athlete from a specific population and will flag a positive corrected T/E test
based on the historical statistical trends for that specific athlete. There are
two approaches which will be taken: one involves using the population
characteristics of the athlete, thus building an adaptive model based on a
known-sigma of an athlete’s respective population; the other model is to
utilize a Markov-Chain Monte-Carlo algorithm (MCMC(), called the Gibbs
sampler, and generate a parameterized model. In each case, the approach of
this research is to take an individual and build and adaptive model that will
show steroid abuse for that specific individual in a longitudinal manner
based on new information as it becomes available.

The population under study for this model is composed strictly of
players of various ages, races, and other physical characteristics that
represent the National Football League (NFL). The sample size covers half
the league’s overall US population tested from January 1, 2006 to December
31, 2008. Most players were tested multiple times over multiple years. In
summary, there are 8,634 tests for 637 NFL players that have had ten or
more tests during the given time interval. Table 1. Summarizes the number

of tests conducted from January 1, 2006 to December 31, 2008.
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Table 1: Database Characteristics of the NFL Population

Number of Samples Number of Players/Year

Jan 1 - December 31, 4,418 1,544

2006
Jan 1 - December 31, 6,862 1,779

2007
Jan 1 - December 31, 6,419 2,028

2008

Total 17,699 3,108

The database characteristics for the NFL population tested

from January 1, 2006 to December 31, 2008. This table

represents the number of players available; it does not denote,

however, the number of players that have every specific

compound available to model.

Even though there are nine characteristic compounds and ratios that can be
examined, this model will initially focus on testosterone and epitestosterone
levels in the form of a ratio called corrected T/E.

Testosterone is a naturally occurring endogenous anabolic compound
found in both males and females. Although males naturally create on average
ten times the concentration of testosterone versus their female counterparts,
the compound does offer biological advantages to both genders. The
advantages of using testosterone can include increased muscle density, linear
body growth, increased protein storage, increased endurance, and increased
bone density*. There is also a general belief that testosterone increases

aggression and competitive attributes within an individual, even though

there is still a high level of scientific debate directly related to whether these
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two characteristics can be modified much by testosterone concentrations
over short periods of time. Nonetheless, there is still a competitive
advantage for an athlete to increase his/her testosterone exposure, so there
is still a natural tendency for athletes within competitive sports to artificially
increase testosterone levels from supplements that can easily be obtained on
the open market. Another compound that is naturally found within the
human body is epitestosterone. The biological pathway in which this
compound is created is still under scientific investigation; however, the fact
that testosterone and epitestosterone are diastereomers that differ in
configuration of one stereogenic center (the 17p-hydroxyl group in this case)
might indicate that that epitestosterone is a mirror-like byproduct from the
same biological processes that generates testosterone (see figure 1).
Although epitestosterone is the inactive epimer of testosterone, it is still
banned by anti-doping agencies as a masking agent. In most normal human
males, testosterone and epitestosterone exist as a 1:1 ratio, although levels
much higher have been known to naturally occur in some non-doping cases.
In fact, one NFL test subject for this paper had a ratio as high as 11.69 and
was still confirmed negative by IRMS spectroscopy. The World Anti-Doping
Agency (WADA) has determined any corrected T/E level above four
constitutes possible testosterone doping and the result of any athlete caught
and confirmed with levels that high without any medical justification can
mean suspension for up to two years.> The detection of actual synthetic

endogenous anabolic steroid peaks from mass spectra output can easily be

14



missed from the exorbitant amount of other steroid data that come with it; in
the case of a typical WADA scenario, there can be up to 95 steroid
compounds and their metabolites that come from one spectra. If an athlete is
tested positive and confirmed as such, then the result can be the loss of
sponsors, reputation, and even the ability to compete for an extended
number of years beyond two (for example, the Olympics cycle every four
years). It is imperative that testing is accurate for both the reputation of the
lab as well as fairly treating athletes that are not tested positive and those
that may have erroneously been tested positive (although there are plenty of
internal controls that prevent this, but nothing is guaranteed).

There are many stratagems than an athlete can employ in order to
mask a positive test when he/she willingly dopes. One such method is to
mask testosterone doping by adding epitestosterone in order to dilute a high
ratio; however, there are IRMS methods used to examine this approach as

well.

OH

Testosterone Epitestosterone

Figure 1: The molecular structures of testosterone and
epitestosterone. The only difference between these two
molecules is the angle of the 178-hydroxyl group.
Testosterone actively bonds to androgen receptors and thus
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serves a function of a growth hormone. Epitestosterone is an

inactive epimer of testosterone.

In addition to analytical tests, a Bayesian statistical approach, similar
to Sotas, has been mentioned and studied in many circles as a way to profile
individual athletes and scrutinize specific samples that fall out of their
normal percentile range. The objectives of this research are two-fold: one
objective is to take two Bayesian approaches (the known-sigma model and
Gibbs sampling algorithm) and build an athlete-specific model that can
profile and alert an analyst if any potential doping occurs. The other
objective is to build a model that is also inclusive of an athlete’s specific
genetic and biochemical makeup; that is, an athlete who dopes might still
show a T/E ratio below that WADA-mandated threshold of 4 and an athlete
that does not dope might show concentrations above 4. This model will alert
an analyst if an athlete dopes based directly off his historical trends

according to his population’s statistical characteristics.

Preliminary Work

For the past five years, the Sports Medicine Research and Testing
Laboratory (SMRTL) has tested half the NFL player population. The tests
have been conducted based on World Anti-Doping Agency (WADA)
mandates, which are known to be the strictest in the world. Currently, there
are 35 Wada-accredited labs throughout the world, three of which are in

North America. Any urinalysis received from an athlete follows a consistent
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methodical testing procedure as prescribed by WADA in order to ensure
consistency and fairness throughout the testing process. Over the years,
SMRTL has collected an extraordinary amount of data for various sporting
agencies, including the NFL. With this in mind, the preliminary steps include
collecting all retrospective NFL data between January 1, 2006 to December
31, 2008 and then cleaning it up. The difficulty with this stage is that
endogenous anabolic steroid levels can vary significantly from individual to
individual and there is no set protocol that definitively eliminates outliers.
The data cleanup will be discussed in the data clean-up procedure.

The other objective is to see if certain distributions for the entire NFL
population matched that for other published populations; fortunately, this
was also confirmed, which will be elaborated later. Finally, Sotas et al.2
discusses the merits of using Bayesian statistics in order to highlight unusual
biomarkers in a longitudinal steroid model. Unfortunately, the specifics of
the method developed by his lab are not published due to proprietary
reasons. The objective of this research is to develop a similar Bayesian
model that does the same thing as Sotas without any controlled starting point
other than retrospective data from the NFL population. The disadvantage
with this study is that the population is not controlled in any way other than

the fact that all members are male and belong to the NFL.

Bayvesian known sigma model

One proposed fixed equation model for this study is the known-variance

Bayesian model. This model utilizes the refined database of 3,108 different

17



NFL players tested from January 1, 2006 to December 31, 2008. These data
provide relatively good information on the distributional characteristics for
current parameters that reflect key ratios and compound concentrations.
Hence, the population information on these ratios and compounds required
by the selective adaptive model -specifically the mean (u), and variance (o) -
are readily available from the NFL population. The adaptive known-variance
model assumes that the test results for a population are defined by the data
(x1,X2,...,Xn) and form the distribution N(u,0?) where u is the known-mean of
the population and o2 is the known-variance of the population data. In
addition, the player’s distribution (prior distribution) is defined as N(vo, To?)
for some specified choices of v, and t,?, both of which are unknown®. In
other words, if there is nothing known about a specific player from the NFL
population, then the statistics from a decile component of the NFL population
will be used initially based off the player’s first test result. As new data from
the athlete become available, his statistics gradually dominate the model.
From the given data, the player’s expected posterior mean and variance are

calculated from the following formulas:

2 — 2
. T.NX+0v,
E(uly)=v=—->—7*

> Posterior Mean
O +nt,

o’t?

~2 0
Viuly)=1"= 2 2 Posterior Variance
o’ +nt,
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The posterior mean is a weighted average of the prior mean and the sample
mean. The posterior variance is also based on a weighted calculation of the
population and sample variance. To establish a reasonable Bayesian
posterior percentile for a particular player’s posterior mean and a weighted
average of the overall population’s standard deviation with the player’s
standard deviation, the 95t and 97.5t posterior percentiles are included
based on standard protocols used in toxicology. The 95t and 97.5th
percentiles are arbitrary depending upon the need to avoid any false
identification of positive test results. In this instance, the model will simply
be used to identify a player’s results for further potential testing only and not

for sanctions.

Gibbs Sampler Model

Another Bayesian approach is to use a Markov chain Monte Carlo algorithm
and approximate a posterior statistical value from given joint conditional
distributions. The mean, , is the variable of interest where u=(u1,...,up).
The joint posterior distribution of u, denoted by [u|data], is difficult to
summarize and draw from since little information about the athlete is
initially given. The set of conditional distributions is given as

[u1|uz,..., up, data],

[uz|ua,us, ..., up, data],
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[up|us,..., up-1, data]

The idea is that an individual’s corrected T/E ratios can be used to setup a
Markov chain simulation algorithm from their joint posterior distribution by
simulating from a set of p conditional distributions. Each individual
parameter from these distributions represents one cycle of Gibbs sampling.
In essence, samples generated from the Gibbs sampling algorithm will
converge to their target distribution.”

One precursor for this course of action is to ensure that individuals in
this population have lognormal distributions throughout both modes. Table 2
summarizes the results of various athletes within the distribution where the
last three athletes (marked with *) tested positive for a synthetic anabolic
steroid and player 969 tested positive for corrected T/E. Most of these
distributions are parameterizable which affirms that the distribution for each
athlete can use the natural conjugate prior, which, in turn, means that
statistical parameters are represented by one distribution as oppose to
different distributions for each parameter.® With this observation, a
simplistic approach is to use the Gibbs sampling protocol to map a visible
pattern that is indicative of steroid doping once it occurs. The data reflect a
conjugate prior where the normal-inverse gamma distribution NIG(u,, c, a, b)
reflects the player’s unknown distribution based on patterns that exist with
his peers. Once his data become available with each new test, then the
normal-inverse gamma distribution yields to a posterior normal-inverse

gamma distribution NIG( ﬁ,E,a,l;) where
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u=wy+{1-w)u,
c=wln
w =nc/(1+nc)
a=a+n/2
b=b+SS/2
SS = (n =15+ (W/le)(F - u,)?

where, y is the sample mean and s? is the sample variance. Naturally, this is
too difficult to do in Excel, but WinBugs has this function built in. The code
utilized in WinBugs is listed in the Appendix.

Table 2: Individual Player Distributions

Goodness of Fit Tests

Distribution at a=0.05
Data Characteristics Parameters Reject Ho?
>
o 00
c £
C —_ - o
~ 0 E © g
o o c x 5 Q@ 2 o
> = = © c o o 3 2 c o
© @) € € = o o 3
o Q2 - oo 2 L
e 2 o) o =
o £ el O
3 <
4

=2
o
=2
o
2
(®)

975 250.74% 0.1 3.86 16 Lognormal 0.22551 -2.0014
4357 150.24% 0.11 1.73 21 Lognormal 0.54076 -1.7654 Yes Yes Yes
26545 125.67% 0.07 0.78 13 Lognormal 0.62669 -2.1872 No No No
23250 106.22% 0.53 541 20 Lognormal 0.47867 -0.19899 No No Yes
1011 91.40% 0.14 1.18 18 Lognormal 0.43153 -1.3509 No No No
25482 82.39% 0.14 096 15 Lognormal 0.4733 -1.5481 No No No
25481 77.15% 04 217 10 Lognormal 0.50308 -0.50269 No No N/A
4485 71.00% 093 453 10 Lognormal 0.43096 0.28906 No No No
2933 66.16% 1.21 7.29 18 Lognormal 0.38233 0.61276 No No No
4352 65.12% 1.16 5.87 11 Lognormal 0.43213 0.59669 No No No
20442 62.35% 0.89 4.27 11 Lognormal 0.41184 0.3126 No No No

719 62.09% 0.92 43 11 Lognormal 0.42304 0.32946 No No No

748 60.95% 0.63 34 16 Lognormal 0.38179 -0.03701 No No No
5345 60.40% 1.24 5.02 10 Lognormal 0.46024 0.59281 No No N/A
22402 59.13% 0.49 2.17 10 Lognormal 0.394 -0.29004 No No N/A
23241 59.09% 0.58 2.63 9 Lognormal 0.4038 -0.05914 No No N/A
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3214
3844
24891
1498
21419
24916
24899
687
1743
1807
22805
4367
23345
7641
5922
25012
986
1810
21400
20461
4416
2257
1831
24863
21715
23215
24864
3823
23117
21390
23147
21576
2284
21442
2880
23623
22661
23175
21424
21733
23151
21603
772
24842
23140
3611

54.72%
52.53%
52.35%
52.30%
51.86%
51.82%
48.68%
48.58%
48.38%
48.22%
48.04%
47.58%
47.44%
46.88%
46.69%
45.53%
45.04%
44.41%
44.31%
44.28%
42.77%
42.25%
42.07%
41.78%
40.95%
40.93%
40.60%
40.47%
30.74%
30.65%
30.12%
30.08%
29.93%
20.69%
20.67%
20.63%
20.60%
20.60%
20.59%
10.34%
10.13%
9.59%
9.53%
9.43%
9.43%
8.84%

1.38
0.5
0.13
0.1
1.15
0.63
0.13
0.17
0.87
0.1
0.21
0.53

0.09
0.06
1.12
0.12
0.81
0.52
0.84
0.68
0.5
2.22
1.32
0.12
0.6
0.65
1.35
0.66
1.03
0.64
1.35
1.22
0.09
0.93
0.83
0.68
1.16
1.66
1.21
0.81
0.62
0.89
0.66
1.05
0.61

6.05
1.99
0.71
0.45
5.01
2.62
0.51
0.84
3.84
0.41
0.81
2.03
4.33
0.37
0.23
4.81
0.41
2.82
2.05
3.58
2.35
1.82
7.77
4.55
0.56
2.4
2.3
4.08
1.58
2.9
1.9
3.18
3.51
0.19
1.69
1.57
1.37
2.51
3.3
1.71
1.09
0.84
1.18
0.88
1.41
0.8

10
10
14
10
17
14
12
27
13
23
11
12
19
10

13
12
11
13
17
13
14
14
14
20
18
17
10

13
23
12
13
13
13
13
11
14
15
10
10

12

12

Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal
Lognormal

0.41491
0.39774
0.3922
0.40631
0.39931
0.34973
0.39172
0.34365
0.33976
0.36289
0.40842
0.60148
0.30473
0.41023
0.3683
0.41582
0.32967
0.38317
0.32835
0.31184
0.33589
0.3575
0.34656
0.28216
0.30868
0.34964
0.33337
0.3386
0.25997
0.25756
0.2762
0.24031
0.25329
0.18145
0.19571
0.1931
0.20999
0.19276
0.18276
0.09448
0.09471
0.09097
0.10064
0.08818
0.08963
0.08294

0.81667
-0.24447
-1.4107
-1.743
0.64698
-0.10699
-1.5878
-1.2897
0.34688
-1.8526
-1.0193
-5.06E-05
0.35751
-1.7701
-2.271
0.57186
-1.7886
0.34109
-0.19803
0.26064
-0.0192
-0.16808
1.2255
0.58757
-1.5691
0.02603
-0.03468
0.70742
-0.0205
0.42832
0.05664
0.52381
0.61738
-2.1312
0.2026
0.14099
0.05001
0.51472
0.73224
0.32401
-0.06747
-0.33847
-0.01515
-0.29457
0.21202
-0.37697

No
No
No
No
No
No
No
No
No
No
No
No
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

22

No
No
No
No
No
No
No
No
No
No
No
No
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

N/A
N/A
N/A
N/A
No
No
No
No
No
No
No
No
No
N/A
N/A
No
No
N/A
N/A
N/A
No
No
No
N/A
No
No
No
No
N/A
No
No
No
No
N/A
No
No
No
No
No
No
N/A
No
No
N/A
N/A
No



1777 8.45% 0.59 0.76 10 Lognormal 0.08235 -0.38021 No
2322 8.40% 1.2 159 11 Lognormal 0.0834 0.27535 No
26871 8.11% 1.76 231 10 Lognormal 0.07804  0.70404 No
24844 7.60% 3.14 3.77 8 Lognormal  0.12462 1.2235 No
2643* 153.87% 2.07 34.87 8 Lognormal 0.9488 1.3858 No
24875* 16.64% 0.67 1.17 11 Lognormal 0.15504 -0.11652 No
969* 73.92% 0.59 5.03 30 Lognormal 0.35859 -0.05297 Yes
23117* 32.82% 0.59 1.29 10 Lognormal 0.30187 -0.01258 No

The distributions for seventy players were analyzed. The players
spread across a broad spectrum where the difference between their
lowest and highest corrected T/E results was the factor taken into
consideration for their distributional analysis. The last four players
marked with (*) tested positive for some synthetic anabolic steroid.
Most players have a lognormal distribution with two parameters.

METHODS AND MATERIALS

Chemical Extraction Procedure

The urinalysis and determination of synthetic anabolic steroid abuse follows
a set protocol as mandated by the World Anti-Doping Agency (WADA). The
initial sample is 3mL of urine taken randomly from an athlete at an unknown
time. The urine sample is first tested for pH and specific gravity in order to
determine if the athlete has attempted to dilute his urine prior to a drug test.
Once the physical characteristics of the urine are tested, then the chemical
procedure ensues. The extraction process is as follows: the sample is first
buffered and hydrolyzed with p3-glucuronidase, re-extracted with methyl
tert-butyl ether, dried down and derivatized with n-methyl-n-
trifluoroacetamide. The sample is then analyzed using an Agilent 7890A

GC/MS-SIM. The peaks generated are compared to a known standard with
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known concentrations based on WADA protocols; for any sample peaks that
match retention times and meets or exceeds standard quantification, then
that sample is marked as a potential positive. The confirmation process for
synthetic endogenous steroids is to re-extract the urine sample, but then use
ion-ratio mass spectrometry (IRMS) and examine the generated C-13 to C-12
ratio. Synthetic endogenous steroids tend to have fewer C-12 atoms than
their endogenously produce counterparts, which means thata C-13/C-12
ratio greater than 3 is indicative of synthetic anabolic steroid doping

according to WADA.?

Data Cleanup Procedure

The original dataset of NFL samples collected from January 1, 2006 to
December 31, 2009 contains N, = 17759 samples. The variables within each
sample are as follows: the player identification number, sample date, pH,
specific gravity, T/E, corrected T/E, testosterone, epitestostrone, DHEA,
androsterone, etiocholanolone, and d3-testosterone/d3-epitestosterone. In
addition, the ratios androsterone/etiocholanolone and
androsterone/testosterone were manually calculated and added to the
available variables. The difficulty with this data set is primarily that all data
available in the database were manually entered by analysts employed at
Sports Medicine Research and Testing Lab (or SMRTL) based on the results
obtained from the GC-MS system. The other problem is that the results

obtained from the GC-MS system could easily be incorrect if the analyst who
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performed the evaluation neglected to calibrate the instrument or adjust the
appropriate retention times. In essence, there are a lot of possibilities of
data error in the data set and it is very difficult to retrieve archived data and
rebuild the exact analytical GC-MS method to match the original parameters
in which the dataset was originally generated. Variables such as
temperature, column type, column length, compound consistency, and even
the age of the instrument are all nominal and difficult to precisely duplicate,
which prevent a perfect reenactment of the original analysis, so the data can
not be validated after a certain point and unfortunately the data used for this
paper fall out of time range where any meaningful correction can occur. In
order to compensate for this issue, a cleaning methodology was agreed upon
and applied consistently throughout the dataset. Even though the objective
of this specific project is to model corrected T/E ratios, other endogenous
anabolic steroids were included in the clean-up since these will also be used
to build a multivariate Bayesian model during a later stage of funding. The
cleaning methodology included entire sample deletions as well specific
variate deletions within each sample with the overall goal to keep as much
data as possible. First, 224 samples were completely removed since they had
too many missing variables and would yield too little information to carry
them to any further stage. Second, a specific gravity range was determined to
be [1.00, 1.04], where 1.00 is the specific gravity of non-iodized water; any
points above or below this range were removed -685 samples were removed

following this guideline. Specific gravity, even though not directly
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incorporated in the model, must be known in order to normalize all
endogenous steroid concentrations for a given athlete. All variates used in
future models, other than ratios, will be normalized in order to mediate the
concentration variation for endogenous anabolic steroids based on nominal
urine density. Third, corrected T/E and T/E given in the data set should both
exceed 0. To ensure its integrity, corrected T/E is calculated directly from
the T/E and the d3-testosterone/d3-epitestosterone ratios, also given in the
database. D3-testosterone/d3-epitestosterone ratios, it must be noted, act
strictly as an internal standard or control in order to ensure that the ratios
from one sample to the next follow a law of proportions that can easily be
violated by any abnormalities related to instrumentation or the extraction

process. The following formula computes corrected T/E:

Corrected T/E = (T/E)x4/(d3-testosterone/d3-epitestestosterone)

Theoretically, the calculated values should match the given corrected T/E in
the database. This test was carried out further by calculating the absolute
difference between the given corrected T/E and directly calculated corrected
T/E. Any values that exceed 0.25 were noted and removed from the dataset.
Overall, 438 samples fall out of this range. Another data characteristic to
note, values for testosterone less than 10ng/ml are not quantitated due to
limits with instrumentation and analysis methods. This also applies to

epitestosterone where the value is less the 2ng/ml. Corrected T/E ratios are
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automatically calculated once the data is processed by the analyst; however,
the difficulty remains validating this data since it is impossible to calculate a
ratio with two unknown values. One final insurance step was to note and
remove variable outliers using a bootstrap method. For the bootstrapping
procedure, the upper fourth quartile of the data poll was examined, mainly
the upper limit of the 99t percentile. For each compound, 1000 iterations
were used in order to determine the upper limit. This coefficient was then
multiplied by 2 and that value was used as the outlier cutoff point. Table 3
summarizes the output from the bootstrap method. Note that most samples
fell within range, only a handful of samples were removed using the
bootstrap method.

Table 3: Bootstrap Summary

Parameter Mean Std. Outlier | Outliers New New
Dev Factor | Removed | Mean Std.

Dev

Corrected T/E 1.289 1.041 12.360 1 1.286 1.006
Testosterone 35.4 20.5 264.0 1 35.3 20.0
Epitestosterone | 38.3 249 322.0 1 38.3 24.3
Androsterone 2725 1378 18730 0 2725 1378
Etiocholanalone | 1930 997 14094 0 1930 997
DHEA 35.5 21.5 302.0 0 35.5 21.5
Andro/Etio 1.57 0.87 9.96 8 1.56 0.72
Andro/Test 100.4 65.9 668.3 1 100.3 65.4

Mean and standard deviation refer to the statistical parameters before
any bootstrap determined outliers were removed from the data set.
The new mean and standard deviation indicate the new statistical
parameters once outliers were removed.

Fourth, all endogenous anabolic steroids were corrected based on specific

gravity and dilution factors. One strategy that athletes may use to thwart a
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urinalysis is to dilute their urine. Specific gravity is measured for each
sample before the actual urinalysis begins and any sample that has a specific
gravity less than 1.01 is doubled. This translates into dividing each
endogenous steroid concentration by 2 if they had a corresponding specific
gravity less than 1.01 since those values are based off twice the volume of
urine. Fifth, specific gravity was normalized and that value was used to
normalize testosterone, epitestosterone, etiocholanolone, DHEA, and

androsterone:

Normalized Specific Gravity = (1.02-1)/(raw specific gravity - 1)

Finally, all positive samples are noted within the dataset. As for this dataset
there are four positive corrected T/E ratios for three different athletes; in
addition, there are positive samples that entirely consists of one boldenone
metabolite, three methyltestosterone metabolites, one epimetenediol, and
one epitestosterone at 601. With all the above correction factors there are
N=15736 samples that contain all information needed for the overall
analysis. However, with the exception of the 224 samples listed in part 1, no
other samples have been removed in their entirety. There are 16,934
negative samples where corrected T/E is greater than zero and four
additional corrected T/E samples where the player tested positive. Table 4
shows the corrected T/E summary for all negative samples and this will be

the variable used to build the preliminary models.
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Table 4: Corrected T/E Statistics for All Negative Athletes

Variable

N

Mean

Std. Dev

Variance

Min

50t %

95t %

Max

Corrected T/E

16934

1.30

1.01

1.03

0.02

1.07

1.30

11.69

Summary statistics for corrected T/E for all negatively tested athletes.
This summary does not include any positive tests. Note: there are 416
corrected T/E values greater than 4.0, which, according to WADA, are
indications of synthetic anabolic steroid doping; however, all these
values were confirmed negative by IRMS.

CHAPTER 3

RESULTS

Data characteristics

There are multiple variables examined and the distribution characteristics

differ widely between some compounds and yet are similar between others:

the distributional summaries have been included for completeness. The

focus of this paper is on corrected T/E ratios, but eventually, the other

variables will be included in a multivariate model since they all represent

endogenous anabolic steroid levels. It must be noted that the corrected T/E

distribution was the only variable that formed an observable bimodal

distribution, which is expected with this dataset.
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Figure 2: Histogram for non-positive NFL players from January 1,
2006 to December 31, 2008. Corrected T/E is composed of both
testosterone data and epitestosterone data. The bimodal distribution
as evident in the histogram for corrected T/E should be seen with the
testosterone, but LOQ restraints did not record the first mode for
testosterone.
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Note the bimodal distribution of T/E, which is indicative of a minority
population that carries UGT 2B17 double deletion polymorphism.1® This
bimodal characteristic and its relative proportions of “low” and “normal”
basal corrected T/E ratio has been well documented by other groups.311 12 13
This bimodal distribution is not seen in the graph of testosterone
concentrations since the limit of quantification (LOQ) of the assay used for
these analysis is 10 ng/mL, which excluded values below that threshold. The
other distributions are included since there are no known results of
distributions that can be compared to them. Figure 3 shows a box plot for all

athletes that have more than 20 tests within the given time reference.
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Figure 3: Box-plot for players that had more than 20 tests from
January 1, 2006 to December 31, 2008. All positive tests have been
removed from the data set.
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The ranges vary significantly with most athletes, but this is to be expected
given the erratic behavior in which testosterone levels vary based on the
previous explanations. It must be noted, however, that all these points

represent negative tests, even those above the 4.0 threshold.

A Bavesian Model for a Positive Athlete

Two players were chosen that had sufficient data points to give a broad
picture of the overall model: one tested positive for testosterone doping and
one did not. Table 5 shows the general statistical characteristics for these
two players.

Table 5: Statistical Summary for Two Individual Players

= — =
oy = > . B . B
< s |2 = |§ |BE|% |BE |Z
= = | B 5= |75
A A
Positive 1.049 | 0.775 30 0.59 | 0.75 | 0.865 1.68 | 5.03
(with
positive
test
included)
Positive 0912 | 0.193 29 0.59 | 0.74 0.86 1.20 | 1.68
(without
positive
test
included)
Negative 0.88 | 0.176 30 0.55 | 0.67 0.87 1.22 | 139

Table 5: Statistical summary of two players (one that tested negative
for steroid doping and the other that tested positive for testosterone
doping) that have an equivalent number of data points.
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Figures 4 and 5 show the results for the known-sigma model and the Gibbs

sampling algorithm, respectively, for a player that had a confirmed positive

corrected T/E test at n=10.

Corrected T/E

Known-Sigma Model for a Positive Player

6
5 == Data
n Post Mean
4 == Post 95th Percentile
=&—"Post 97.5th Percentile

3

2

1

0

1 6 11 16 21 26

Observation

Figure 4: Data for a NFL player that tested positive at n=10. The
known-sigma model is the basis for this output, which shows both the
posterior mean and the posterior percentiles.
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Gibbs Sampling for a Positive Player
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Figure 5: The first graph shows the Gibbs sampling algorithm and
where the initial points begin. The second graph is drawn on a similar
scale to that of the known-sigma model in order for fair comparison.
Here the data and mean are below both the 95t and 97.5t posterior
percentiles with the exception of point n=10, where this player tested
positive for testosterone doping.
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The known sigma model from figure 4 has a tighter initial range mainly since
the population variance for that athlete in his respective decile is relatively
tight (population variance is 0.0128). The prior mean for the player was set
at one, which is relatively conservative, but his prior variance is set relatively
high at 1000. The advantage of the known-sigma model is that if population
information is known, which is the case for this data set, then the player’s
prior information has very little weight in the overall model, which is evident
by the tight initial range for his first corrected T/E data point. The one
confirmed positive point clearly violates both the 95t and 97.5t% posterior
percentiles and would clearly indicate to an analyst that there is some
irregularity with this specific data point. In addition, both the 95t and 97.5th
posterior percentiles do not dramatically increase with the positive test, but
stay relatively close to their pre-positive levels.

Figure 5 shows the Gibbs sampling approach, which, in many ways
mirrors the known-sigma model. There is a clear violation at n=10, which is
evident in the model by the size of its jump and also it violates both the 95t
and 97.5t posterior percentiles. One noticeable feature of this model is that
the initial three points have high posterior percentiles, which suggest that
this model has a high level of uncertainty with the initial points. The same
population variance and player mean were used in the initialization of the
model, so the same preconditions are utilized in both the known-sigma and
Gibbs sampling models, but the Gibbs sampling procedure has a steeper

learning curve than the known-sigma model. Another observation is that
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both 95t and 97.5t% posterior percentiles have significant lag adjusting back

to their pre-positive levels as evident in figure 5.

A Bavesian Model for a Negative Athlete

Figures 6 and 7 show both the known-sigma model and the Gibbs sampling
algorithm for a negative player. Again for the known-sigma model, the
player’s respective population decile variance is 0.0128 and his prior mean is
one and his prior variance is 1000. As observed with the positive-tested
player, both the 95t and 97.5t posterior percentiles rapidly adjust with the
initial point and the majority of points fall below both intervals. There are
slight variations in which the data are recorded above the posterior
percentiles (for points n=3,5,12,17, 19, 21, 22, and 27) and this does show
an imperfection with this model (the same problem exists with the Gibbs
sampling algorithm which we shall see shortly). An explanation is that
testosterone levels for an individual can vary significantly based on many
biological factors and, unfortunately, the testing procedures are never static.
An approach for SMRTL is to develop the testing method so that there is less
variation due to instrumentation issues. However, the data range for this
model is not significantly outside the posterior percentiles and none of these
points would have raised any red flags since they are all below the WADA

cutoff of 4 for corrected T/E.
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Known-Sigma Model for a Negative
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Figure 6: The known-sigma model for an NFL player that was never
tested positive for corrected T/E from January 1, 2006 to December
31, 2008.
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Gibbs Sampling for a Negative Player
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Figure 7: The first graph shows the Gibbs sampling algorithm where
the initial points begin. The second graph is drawn on a similar scale
to that of the known-sigma model in order for fair comparison. Here
the data and mean are below both the 95t and 97.5t% posterior
percentiles with the exception of points n=5, 12,17, 18, 20, 22, and 26.
Figure 7 shows the Gibbs sampling algorithm for a negative player. Similar
to figure 5 for the positive-tested athlete, there is still a huge variation for the
initial three points and the model behavior is very similar to the known-
sigma model for the negative tested athlete in figure 6 with one noticeable
exception: the known sigma model shows eight points that exceed the 97.5th
posterior percentile whereas the Gibbs sampling algorithm shows only seven
points above the 97.5t posterior percentile (points n=5, 12, 17, 18, 20, 20,

22, and 26). This may seem trivial with this data set, but it does seem to

suggest that the Gibbs sampling algorithm manages to contain the majority of
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negative data below their posterior percentiles, although it can contain the
first three points due to the steep initial learning curve of its posterior
percentiles. It must be noted that the Gibbs sampling procedure mirrors the

model output from Sotas et al3.

Quantification

The data cleanup and the determination of statistical attributes of the overall
NFL population were conducted using STATA 11.0. The equations for the
known-sigma model were used in Excel. WinBugs was utilized to determine

all statistical parameters for the Gibbs sampling algorithm.

CHAPTER 4

DISCUSSION

Significance of findings

The first key finding is that the bimodal distribution of corrected T/E
matches that of previous measured distributions.? Another key finding is
that given a general NFL population with known statistical parameters, it is
indeed possible to build a player-specific model that shows the appropriate
posterior percentile based primarily on the population’s mean and variance
with the initial point, but as more player information becomes known, then
the player’s posterior mean and variance begin to dominate the model. The

premise of this model can be applied to every athletic demographic where
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members of that sport have physical and possibly genetic characteristics
similar to other members within that specific athletic discipline, but might
not have the same characteristics compared to members of another athletic
discipline. Aslong as there is enough information specific to a population,
primarily variance, then it is possible to build such models across all athletic
disciplines with known population statistics.

The Gibbs sampling also provides an adequate model for modeling
corrected T/E ratios for individual athletes. The similarity of this approach is
that population information is as critical for this model to function as to that
of the known-sigma model. The only additional property that has to be
determined is if members in the given population had parameterizable
distributions that would allow us to justify using a conjugate approach
building the Gibbs algorithm. Similarly, for this study the population was
divided into deciles where the player’s initial corrected T/E was used to
determine in which potential decile he belonged. The variance and mean of
the population at the determined decile were used as the initial point for the
Gibbs sampling algorithm. This approach is debatable since it does not seem
to matter much where the initial point is drawn. Experimentation with other
initial points seem to draw the same conclusion after two or three of the
player’s data points were entered into the model. Another notable feature of
the Gibbs sampling method is that it matches the output provided by the

Sotas et al paper.3
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Known-Sigma model versus Gibbs sampling algorithm model

Both models have adequately modeled two separate athletes where one
tested positive for testosterone doping at one point and another never tested
positive for testosterone doping within the same given time interval. The
known-sigma model does use the population’s variance in which a given
athlete is a subset. The initial point is heavily dependent on the population
parameters, but as more information about the athlete is known over
multiple testing rounds, then his posterior distribution becomes increasingly
dependent upon his own information as seen from formulas 1 and 2.
Although the athlete in this case is a member of the NFL and the population
variance used consists of only NFL players, there is still significant non-
specificity with a given athlete. As mentioned earlier, testosterone
concentration is dependent on race, age, weight, overall health, and genetic
characteristic as evident from the bimodal histogram in figure 2. In reality,
there are still many unknowns with respect to this population and where the
athlete fits in. Dividing the distribution into deciles is one method to remedy
this problem, but there still could be overlapping subsets that form a specific
decile in which the athlete may only belong to one subset. However, this
problem will only exist with the initial tests since the athlete’s statistical
parameters begin to dominate the model as more of his tests become
available.

The Gibbs sampling algorithm, a member of a Monte-Carlo Markov

Chain procedure, too, is dependent on an athlete’s population statistical
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characteristics. Even though the model was initialized using the decile
procedure mentioned above, experimenting with similar values for mean and
variance did not change the overall behavior of the model much as far as the
initial point is concerned. The initial three testing points have significant
uncertainty related to posterior percentiles, but as more information
becomes available the athlete’s statistical parameters begin to dominate the
model. The pattern almost mirrors that of the known-sigma model with the
exception that if a positive test occurs, then the Gibbs sampling model seems
to require more player data in order to adjust the posterior percentiles to
their pre-positive levels.

In reality, both models do the same thing over long periods of testing;
however, the Gibbs sampling algorithm shows the level of uncertainty with
the first three testing points since so little information of the player is
available. The known-sigma model adjusts immediately with the first three
testing points and remains relatively consistent throughout the testing cycle.
By observing the fact that one player from a population distribution, a
distribution which is composed of many possible biological variables, is
unknown suggests that the first three points of the known-sigma model
should reflect the uncertainty of the population and, therefore, look similar
to that of the Gibbs sampler approach. This suggests that the Gibbs sampling
algorithm is a more realistic model for steroid behavior for a given athlete

within this population.
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Limitations and future work
One possible way that an athlete could trip up this model is to dope with his
first and second tests. If the analyst misses these two positive tests, which
can easily be done, then the threshold for the model will be too high,
especially if the athlete continues doping throughout his athletic career.
Another limitation is that this model does not include any information
related to true positives. Calibration of this model may require an athlete to
willingly dope at certain time points within his career; this would assuredly
demonstrate the model’s sensitivity and specificity with regard to the tested
athlete. A future funding request will involve testing for this fact by having
athletes within a certain profile willingly dope with testosterone.

Future work with respect to this model is to take all variables within
the dataset and build a multivariate adaptive model. Since biological
metabolism and pathways are seldom insulated, it would be practical to
conclude that that doping for one compound could easily raise multiple red
flags with respect to the other compounds. Additional compounds such as 5-
a-androstenediol and 5-f-androstenediol will also be added to the model
since the ratios of these two compounds have direct correlation with

endogenous anabolic testosterone levels.

Conclusions and Relevance to Toxicology and Economics and other fields

The known-sigma adaptive Bayesian model and the Gibbs sampling approach

developed based on NFL data can be applied across all athletic programs. As
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long as each program has enough data to generate known statistical
parameters, the known-sigma model and the Gibbs sampling algorithm can
be implemented. Characteristics of these models’ methodology are their
robustness across disciplines including other areas of toxicology. For
instance, it could be used to alert health professionals of individuals exposed
to toxins that live within a radius of an industrial center. The adaptive
Bayesian approach with known sigma and the Gibbs sampling algorithm can
easily be applied to medicine, some examples include the following: the
development of a model for healthy people according to BMI variations; PSA
concentrations in older men and incidence of prostate cancer; or even
estrogen levels and incidence of stroke. Some examples in economics include
the monitoring of red flags at a bank that might trigger an audit; a specific
market irregularity that might be a prelude to a crash; or even a social
pattern that might indicate the results of an election. Both models can work
with all of the above problems with the limitation that both models have to

have a known population in order to initialize properly.
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CHAPTER 5

APPENDIX
WinBugs Code
Gibbs Sampling Model

Model{

For(iin 1:n)

{

X[i]~dnorm(mu, tau);

H

xnew~dnorm(mu, tau);
mu~dnorm(1, 0.001);
tau~dgamma(0.001, 0.001);
sigma<-1/sqrt(tau);
xbar<-mean(x[]);

}

Initial Point

List(mu=1, tau=6103.516)
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