
 
 
 
Final Report: 
Growth Curve Analysis of Polygraph Data 

 
 
             Grant No. DASW01-03-1-0001 
  Department of the Army 
 

21 May, 2003 
 

Elizabeth Lockette 
  Department of Educational Psychology 
  University of Utah 
  Salt Lake City, UT 84112 
  voice: (801) 581-7148 
  fax: (801) 581-5566 
 

John C. Kircher, Ph.D.  
  Department of Educational Psychology 
  University of Utah 
  Salt Lake City, UT 84112 
  voice: (801) 581-7130 
  fax: (801) 581-5566 
  email: kircher@gse.utah.edu 



  2 

Abstract 

Growth curve analysis was used in the present study to test if skin conductance 

responses habituate during polygraph examinations, if the responses of guilty and 

innocent subjects habituate at different rates, and if differential rates of habituation can be 

used to improve the accuracy of computer diagnoses of truth and deception. The data for 

the present project came from two previously conducted mock crime experiments.  One 

study was conducted at the University of Utah with 84 participants.  The other study was 

conducted at the FBI Academy with 120 participants.  Half of the subjects in each 

experiment were guilty of committing a mock theft, half were innocent, and all subjects 

were offered a monetary bonus to convince the polygraph examiner of their innocence. 

Although there were significant and substantive differences between the guilty and 

innocent groups in rates of habituation, the resulting parameter estimates did not 

significantly improve the accuracy of computer decisions. Alternative models of growth 

for skin conductance and models of cardiovascular and respiration responses were not 

explored that might increase the discrimination between truthful and deceptive 

individuals.  



  3 

 

Background 

Probable-lie Polygraph Tests 

The Probable-Lie Test (PLT) is the most common type of polygraph test for 

criminal investigation in the United States (Office of Technology Assessment, 1983).  

The PLT contains relevant, probable-lie, and neutral questions. Relevant questions 

pertain to the matter under investigation; e.g., “Did you rob the 7-11 on May 18th?” 

Probable-lie questions address a general content area that is related to the crime but 

excludes the particular matter under investigation; e.g., “Before the age of 23, did you 

ever take something that didn’t belong to you?”  Neutral questions serve as buffer items; 

e.g., “Do you live in the United States?”  All test questions are reviewed with the subject 

prior to the test.  Relevant questions are reviewed first, and subjects generally answer the 

relevant questions “No.”  Probable-lie questions are reviewed next, and neutral questions 

are reviewed last. When the probable-lie questions are introduced, the subject is led to 

believe that admission to those questions would raise doubts about the person’s veracity 

concerning the crime – that they would be viewed as the type of person who would steal 

something and lie about it.  The manner in which probable-lie questions are introduced is 

designed to embarrass or intimidate the subject into answering “No.” If the subject 

answers “Yes” to a probable-lie question, the question is reworded slightly to elicit a 

“No” response from the subject; e.g., “Other than what you told me, before the age of 23, 

did you ever take something that didn’t belong to you?” Even if a probable-lie question is 

reworded, it is difficult or impossible for subjects to answer such a question truthfully 



  4 

with a “No.” The PLT is so-named because the answers to probable-lie questions by all 

subjects are probably false.  The neutral questions are reviewed last. 

The PLT is based on the assumption that subjects will react most strongly to the 

type of question that poses the greatest perceived threat to their appearing truthful on the 

test (Podlesny & Raskin, 1977). Guilty subjects answer the relevant questions 

deceptively. Because the relevant questions pertain directly to the matter under 

investigation, guilty subjects are expected to react more strongly to them than to the 

probable-lie questions. Conversely, innocent subjects answer the relevant questions 

truthfully, but are likely to be deceptive or unsure about the truthfulness of their answers 

to the probable-lie questions.  Therefore, innocent subjects are expected to react more 

strongly to the probable-lie questions than to the relevant questions.  It is expected that 

guilty and innocent subjects will show their weakest reactions to the neutral questions, 

although reactions to the neutral questions typically are not evaluated.  Table 1 contains 

an example question list for a PLT concerning the theft of a ring. 

Table 1.  Example question list for a probable-lie test 

1. (Buffer) Do you understand that I will ask only the questions that we have 

discussed? 

2. (Sacrifice Relevant) Do you intend to answer truthfully each question about the 

theft of the ring? 

3. (Neutral) Do you live in the United States? 

4. (Probable-lie) Before the age of 23, did you ever take something that didn’t 

belong to you? 

5. (Relevant) Did you take the ring from the secretary’s desk? 
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6. (Neutral) Is your first name Richard? 

7. (Probable-lie) Between the ages of 12 and 23, did you ever break a law, rule, or 

regulation? 

8. (Relevant) Did you take that ring? 

9. (Neutral) Is today Tuesday? 

10. (Probable-lie) During the first 23 years of your life, did you ever lie to get out of 

trouble? 

11. (Relevant)  Do you know where the ring is now? 

In the example sequence, decisions would be based on pairwise comparisons of 

physiological reactions to probable-lie and relevant questions at positions 4 and 5, 7 and 

8, and 10 and 11.  If reactions generally were stronger to the relevant than to the 

probable-lie questions, the subject would be called deceptive to the relevant questions.  If 

reactions to the probable-lie questions were greater, the subject would be considered 

truthful to the relevant questions.  If there were little difference between reactions to 

probable-lie and relevant questions, the test would be inconclusive.   

The polygraph records subjects’ respiration, electrodermal, and cardiovascular 

responses to test questions. Test questions are presented at a rate of one question every 25 

to 30 seconds. The entire set of questions is presented several times, and each repetition 

of the question sequence provides a chart.  If the test is inconclusive after three 

repetitions of the question sequence (charts), the polygraph examiner often will run one 

or two additional charts. Between charts, the examiner deflates the blood pressure cuff 

for recording cardiovascular activity and gives the subject a one to three minute break. To 

maintain the salience of probable-lie questions, during the break, the examiner may ask 
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about one of the probable-lie questions; e.g., “Did something come to mind when I asked 

you if you ever broke a law, rule, or regulation?” The position of each relevant question 

remains constant across charts, but neutral and probable-lie questions are rotated among 

their respective positions such that each relevant question is preceded by each neutral and 

each probable-lie question at least once (Raskin & Honts, 2002).   

In realistic mock crime experiments, well-trained polygraph interpreters and 

computers reach decisions in 85% to 90% of cases, and about 90% of those decisions are 

correct (Raskin et al., 1999).  However, polygraph decisions are based exclusively on 

accumulated (mean) differences in responses to probable-lie and relevant questions.  No 

human or computer scoring technique considers the possibility that truthful and deceptive 

subjects show different patterns of change in response magnitude over questions within 

charts or across charts.  If the trajectories of growth curves vary as a function of 

deceptive status, then they could provide a new source of diagnostic information that is at 

least partially independent of differences in mean levels.  Estimates of slope parameters 

then might be used in combination with level differences to improve discrimination 

between truthful and deceptive subjects. 

Growth Curve Analysis 

A growth curve in the present study was the line of best fit to a series of observed 

measurements of SC amplitude.  One growth curve represented the linear change in SC 

amplitude over the three PL questions at positions 4, 7, and 10 in the first chart.  Another 

growth curve showed the change in SC amplitude over the three relevant questions at 

positions 5, 8, and 11 in the first chart. Growth curves were similarly defined for 

subsequent charts.   
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Figure 1 shows a set of six growth curves for three charts for a hypothetical 

subject.  The circles represent observed measurements of SC amplitude, and the lines are 

the fitted growth curves.  

Figure 1.  Fitted growth curves for a hypothetical subject 
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 In an analysis of growth curves, the Y-intercept of each growth curve serves as a 

dependent variable.  A subject with three charts would provide three intercepts for the PL 

growth curves and three intercepts for the three relevant question growth curves.  To 

improve interpretability, increase the stability of parameter estimates, and reduce 

multicollinearity, the mean of X is often subtracted from each of the original scores to 

center the time variable.  In the present example, test questions appeared at positions 4, 5, 

7, 8, 10, and 11. Question position (X) would be centered about the mean position (M = 

7.5), and the resulting values on the X-axis for a chart would be -3.5, -2.5, -.5, .5, 2.5, and 

3.5, respectively.  Centering puts the Y-intercept at the center (mean) of the growth 

curve, and makes the Y-intercept the mean level of the growth curve.  Subsequent tests of 

Y-intercepts then become tests of the mean levels of the growth curves. 

In Figure 1, the intercepts drop over Charts, and the mean intercept for PL 

questions is greater than the mean intercept for relevant questions.  If this pattern were 

characteristic of most subjects in an experiment, one would expect a main effect of 

Charts on intercepts and a main effect of Question Type on intercepts.  
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An analysis of growth curves treats the slope of each growth curve as a second 

dependent variable.  In Figure 1 above, all of the slopes are negative, and they are all 

equal.  Since the lines are parallel, there is no change in the slope of the growth curve 

over Charts (no main effect of Charts on slopes) or over types of questions (no main 

effect of Question Type on slopes). 

Another pattern of responses to PL and relevant questions is shown in Figure 2.  

Again, the Y-intercepts drop over charts (main effect of Charts on intercepts). There also 

is a mean difference between the intercepts for PL and relevant questions that favors the 

PL questions. Finally, there is a Chart X Question Type interaction because the difference 

between the intercepts for PL and relevant questions decreases over charts.   

Figure 2.  Fitted growth curves for probable-lie and relevant question for a hypothetical 
subject 
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The slope for PL questions is steeper than the slope for relevant questions (main 

effect of Question Type on slopes). Responses to PL questions habituated more rapidly 

than responses to relevant questions. Since the mean slope for PL and relevant questions 

is constant over charts, there is no main effect of Charts on slopes.  Finally, although the 

difference between the intercepts changes over charts, the difference between the slopes 

does not (no Chart X Question Type interaction effect on slopes).   

Comparison of Growth Curve Analysis and Repeated Measures ANOVA 
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Traditionally, repeated measurements of physiological reactions to probable-lie 

and relevant questions are analyzed with repeated measures analysis of variance 

(RMANOVA; e.g., Podlesny & Raskin, 1978).  In fact, there is a close relationship 

between growth curve analysis and traditional RMANOVA.  According to Bryk and 

Raudenbush (1992), the methods yield the same conclusions when the data are 

completely crossed and balanced and the RMANOVA assumptions are met. 

However, there are conceptual and practical advantages in using hierarchical 

models to analyze growth curves.  The primary purpose of the present study was to 

determine if slope estimates for individual subjects are diagnostic, because human and 

computer methods of chart analysis currently do not use them.  The hierarchical linear 

model (HLM) provides estimates of slopes for individual subjects, whereas RMANOVA 

does not.  RMANOVA models variation in growth as an interaction of Groups and 

Occasions, and parameter estimates for individual subjects are not readily available.   

Second, RMANOVA requires that measurement Occasions be completely crossed 

with Persons. In contrast, HLM treats measurement occasions as though they were nested 

within persons.  In the present study, probable-lie and relevant questions were nested in 

Charts, and Charts were nested in Subjects. The latter approach is more accommodating 

as it allows for unequal spacing between measurement occasions and for unequal 

numbers of observations across people.  In the present study, every subject in an 

experiment provided the same number of observations, and the spacing between 

questions was approximately equal and constant across all subjects.  However, Kircher et 

al. (2001) obtained five charts per subject, whereas Podlesny and Kircher (1999) obtained 

only four charts per subject.  Although we did not do so, HLM would allow us to 
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combine the data sets from the two experiments into a single analysis.  Such an analysis 

would not be possible with RMANOVA without dropping the fifth chart (20% of the 

data) for the subjects in one experiment. 

Third, HLM integrates measurement theory and traditional hypothesis testing. 

HLM partitions the observed variance in intercepts or slopes into true score (reliable) 

variance and error variance.  At each stage of model development, the analysis software 

reports the proportion of unexplained variance in the outcome measure that is reliable.  

As independent variables are added to the model to test hypotheses, the proportion of true 

score variance explained by the independent variable is estimated (effect size), and the 

proportion of residual variance in the outcome measure that is reliable is also reported.  

As explanatory variables are added to the hierarchical model, more and more of the 

reliable variance is explained.  When the reliable (true score) variance approaches zero, 

there is no need to add any additional explanatory variables to the model, since all of the 

variance that can be explained (true score variance) has been explained.  Although effect 

size statistics may be obtained following RMANOVA, investigators rarely do so.  In 

addition, traditional effect size statistics provide no indication of whether reliable 

variance remains in model residuals.  If so, then factors other than those included in the 

model affect the dependent variable.  Better theory and more research would be 

warranted. 

A RMANOVA of the data for a simple laboratory study of polygraph techniques 

would require four factors, and all factors but Subjects would be considered fixed. The 

design would contain one between-group factor (Guilt) with two levels (guilty and 

innocent), and three within-subject factors: Charts with three to five levels, Question 
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Position with three levels (QP), and Question Type (QT) with two levels (probable-lie 

and relevant). The linear model for this RMANOVA would include 8 random effects 

(error terms; Subject main and interaction effects) and 16 fixed effects. The fixed effects 

would include the grand mean (), main effects for Guilt, Chart, QP, and QT, six two-

way interaction terms (Guilt*Chart, Guilt*QP, Guilt*QT, Chart*QP, Chart*QT, and 

QP*QT), four three-way interactions (Guilt*Chart*QP, Guilt*Chart*QT, Guilt*QP*QT, 

and Chart*QP*QT), and one four-way interaction (Guilt*Chart*QP*QT). The 

hierarchical model for this design provided a statistical test for each of the 16 fixed 

parameters in this linear model.  In contrast to RMANOVA, a hierarchical analysis would 

also provide tests of the random effects.  

In the present study, hierarchical linear models of growth were developed using 

procedures described in the text by Bryk and Raudenbush (2002) and the HLM Version 5 

computer program (Bryk, Raudenbush, & Congdon, 2002).  HLM provided estimates of 

growth parameters (intercepts and slopes) for each type of question (PL and relevant) and 

each chart.  HLM also provided statistical tests for the following research hypotheses: 

1. Physiological responses habituate within charts. 

2. Physiological responses habituate across charts. 

3. Habituation within charts varies linearly as a function of charts. 

4. Guilt moderates the effects of Question Type on mean levels of growth curves for 

PL and relevant questions. 

5. Guilt moderates habituation rates. 

6. Within-chart habituation varies as a function of Guilt and Question Type. 

7. The between-chart habituation varies as a function of Guilt and Question Type. 
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8. Reliable variance among individuals remains in means and slopes after 

controlling for Guilt, Chart, Question Type, and Question Position. 

Conditional on finding differences between guilty and innocent subjects in the 

slopes of their growth curves, our plan was to determine if the slopes could be used to 

improve the accuracy of computer diagnoses of truth and deception.  We planned to 

develop a multiple regression equation to predict Guilt (0/1) from differences in the 

levels of growth curves for probable-lie and relevant questions (intercepts) and then to 

add slope estimates to the regression equation to test if:  

9. Slope parameters can be used to increase the accuracy of computer diagnoses of 

truth and deception.  

Methods 

The present project used 84 subjects from one polygraph experiment (Study A; 

Kircher et al., 2001) and 120 subjects from another experiment (Study B; Podlesny & 

Kircher, 1999). Both studies used a mock crime paradigm, and in both studies, equal 

numbers of male and female subjects were randomly assigned to guilty and innocent 

treatment conditions. All subjects were recruited from the community, paid for their 

participation, and offered a substantial monetary bonus to convince the polygraph 

examiner of their innocence. Both samples were diverse in terms of age, ethnicity, and 

socioeconomic status. 

Three hundred and thirty-six subjects participated in Study A at the University of 

Utah (Kircher et al., 2001). That study investigated effects of a pretest demonstration of 

polygraph accuracy on subsequent detection rates.  Guilty subjects received tape-

recorded instructions to wait for a secretary to leave her office unattended, find a purse in 
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her desk, and take $20 from a wallet in her purse. A senior graduate student or a post 

doctorate fellow collected five charts of physiological data from each subject. 

Differences between the two examiners in Study A were assessed with a mixed 

model Examiner X Guilt X Sex ANOVA.  Examiner was random and Guilt and Sex were 

fixed factors.  Using an alpha of .20, the main effect of Examiner was not significant and 

Examiner did not interact with Guilt or Sex.  Therefore, Examiner was omitted as a factor 

in the present study. 

Only half of the 336 subjects in Study A received PLTs, and nonstandard 

procedures were used in two of four PLT treatment conditions that affected the accuracy 

of the test. Therefore, the present study included only subjects in the standard PLT 

control groups (n=60) and another PLT condition that varied in a minor way from the 

control condition and did not affect the accuracy of the test (n=24). 

  One hundred and twenty subjects participated in Study B at the FBI Academy in 

Quantico, VA (Podlesny & Kircher, 1999).  Study B was designed to evaluate a new 

method for measuring blood pressure.  Programmed guilty subjects took $10 from a purse 

in a waiting room, denied having taken the money, and took a PLT from a 

psychophysiologist 3 to 14 days later.  Physiological measures included respiration, skin 

conductance (SC), electrocardiogram, and either the cardiograph (n=40) or arterial finger 

blood pressure (BP) (n=40), or both (n=40). Four charts of physiological data were 

collected from each subject. Results revealed that diastolic BP was highly correlated with 

the current measure of cardiovascular activity, and systolic BP was marginally more 

diagnostic of truth and deception than the current measure of cardiovascular activity. 

Further tests revealed that the method of recording cardiovascular activity had no 
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discernable effect on the diagnostic validity of any of the other channels of recorded 

physiological activity. 

Skin Conductance Measurements 

Response Curves.  From the series of digitized polygraph signals, response curves 

were generated for SC.  The SC response curve was defined by the series of stored 

samples that began at question onset of each probable-lie or relevant question and ended 

20 s later.  

Feature Extraction.  Peak amplitude was extracted from the SC response curve.  

To measure peak amplitude, low points in the response curve were identified as changes 

from negative or zero slope to positive slope, and high points in the response curve were 

identified as changes from positive slope to zero or negative slope. The difference 

between each low point and every succeeding high point was computed.  Peak amplitude 

was defined as the greatest such difference.  

Within-subject Standardization. To remove variance among individuals in basal 

levels of physiological activity and reactivity, the repeated measurements of SC 

amplitude were transformed to z-scores within each subject.  For example, in Study A, 

there were 30 measurements of SC amplitude since there were 3 probable-lie and 3 

relevant questions (6 questions) on each of 5 charts. For each subject, the mean and 

standard deviation of the 30 measurements were used to transform each of the 30 raw 

scores to 30 z-scores. 

Hierarchical Linear Model 

A hierarchical model with three levels provided estimates of changes in SC 

amplitude over Question Positions and over Charts.  HLM required a different data file 
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for each level.  The level-1, level-2, and level-3 data were organized as shown in Table 3.  

The level-1 data file contained as many rows as there were test questions (e.g., 6 

questions/chart X 5 charts/subject X 84 subjects = 2520).  The level-2 data file contained 

as many rows as there were charts (e.g., 5 charts/subject X 84 subjects = 420), and the 

level-3 contained as many rows as there were subjects in the experiment (e.g., N = 84).  

 
Table 3a.  Organization of level-1 data file 
 

Chart (j) Question Type Question Position (i) Measure (Yijk) Subject 
(k) 

 Centered Label Index Centered Raw Z 
1 1 -2 PL1 1 4 -3.5 76 1.2 
1 1 -2 R1 -1 5 -2.5 42 -.3 
1 1 -2 PL2 1 7 -.5 81 1.4 
1 1 -2 R2 -1 8 .5 33 -.4 
1 1 -2 PL3 1 10 2.5 69 .8 
1 1 -2 R3 -1 11 3.5 41 -.1 
1 2 -1 PL2 1 4 -3.5 58 .3 
1 2 -1 R1 -1 5 -2.5 38 -.3 
1 2 -1 PL3 1 7 -.5 71 1.0 
1 2 -1 R2 -1 8 .5 44 -.1 
1 2 -1 PL1 1 10 2.5 53 .3 
1 2 -1 R3 -1 11 3.5 29 -.5 

… … … … … … … … … 
1 5 2 PL2 1 10 2.5 … … 
1 5 2 R3 -1 11 3.5 … … 
2 1 -2 PL1 1 4 -3.5 … … 
2 1 -2 R1 -1 5 -2.5 … … 

… … … … … … … … … 
 

Table 3b.  Organization of the level-2 data file 
 
Subject (k) Chart (j) 

 Index Centered 
1 1 -2 
1 2 -1 
1 3 0 
1 4 1 
1 5 2 
2 1 -2 
2 2 -1 
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2 3 0 
… … … 

 
Table 3c.  Organization of the level-3 data file 
 
Subject (k) Guilt 

1 1 
2 -1 
3 -1 
4 1 

… … 
 
Level-1 Models.  At level 1, the linear model was:  
 
Level 1 Yijk = 0jk  +  1jk QP  +  2jk QT  +  3jk QP*QT  +  eijk 
   
 where  
   
 Yijk was a SC response for question position i, chart j, and subject k 
 0jk was the mean level of the growth curves for PL and relevant questions 

for chart j and subject k.  0jk was estimated from the mean of the six 
measured responses on a chart, and it provided a global measure of 
response amplitude for a chart.   

 QP was a question position centered about the mean position (M = 7.5). 

 1jk was the effect of Question Position for chart j and subject k. 1jk was the 
mean slope of the growth curves for PL and relevant questions for chart 
j and subject k.  Conceptually, 1jk provided an overall measure of 
habituation within a chart.  

 QT was a dichotomous variable that distinguishes between PL questions 
(coded 1) and relevant questions (coded -1). 

 2jk Effect of Question Type. 2jk was the difference between the level of 
the growth curve for PL questions and the mean level of the growth 
curves for chart j and subject k (0jk).  The PLT predicts that 2jk will be 
positive for innocent subjects and negative for guilty subjects. 

 QP*QT was a vector of the cross-products of QP and QT and was used to 
measure the interaction effect (3jk). 
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 3jk was the effect of Question Position X Question Type interaction. 3jk 
was difference between the slope of the growth curve for PL questions 
and the mean slope of the growth curves for chart j and subject k (1jk).  
3jk differed from zero to the extent that the within-chart slope for one 
type of question (habituation rate) differed from the slope for the other 
type of question.  Specifically, 3jk for chart j and subject k was positive 
when responses to relevant questions habituated more rapidly than 
responses to PL questions, and it was negative when responses to PL 
questions habituated more rapidly. 

 eijk was the within-chart error.  eijk was the deviation of the measured SC 
response at position i from the fitted growth curve for chart j and 
subject k 

 
Note that each effect () has subscripts j and k.  Since subscripts appear for charts  

(j) and subjects (k), there were as many level-1 regression models and estimates of each 

effect ) as there were charts in the experiment (e.g., 5 charts per subject X 84 subjects = 

420 regression equations). Each regression equation could be used to ‘predict’ the 

responses to the three PL questions and the three relevant questions in a particular chart j 

for particular subject k.  Figure 3 provides a graphical representation of model parameters 

that would be estimated for one hypothetical chart.   

 
Figure 3.  Effects measured by a level-1 model.  The dotted line represents the mean of 
the growth curves for probable-lie and relevant questions. 
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Level-2 Models.  At level-2, parameters were estimated for the following models: 
 
Level 2 
 
 
 

0jk = 00k  +  01k CHART  +  r0jk 
1jk = 10k  +  11k CHART  +  r1jk 
2jk = 20k  +  21k CHART  +  r2jk 
3jk = 30k  +  31k CHART  +  r3jk 

   
where,   
   
 00k was the mean of all SC responses for subject k. 

 01k was the linear change in the mean within-chart SC response across 
charts for subject k (habituation across charts). 

 10k was the mean slope of within-chart growth curves for subject k 
(mean habituation within charts). 

 11k was the linear change in the mean within-chart slope across charts 
for subject k. 

 20k was (half) the mean difference between PL and relevant questions 
for subject k.    

 21k was the linear change in the difference between probable-lie and 
relevant questions across charts for subject k 

 30k was the mean within-chart difference between the slopes of the 
growth curves for probable-lie and relevant questions for subject k 
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 31k was the linear change in the within-chart difference between the 
slopes of the growth curves for probable-lie and relevant questions 
across charts for subject k 

 r.jk were deviations between fitted values and observed jk 
 

There were four sets of level-2 regression equations, one for each growth 

parameter in the level-1 model. The dependent variables for the level-2 models were the 

mean level (0jk) and the effects of QP, QT, and the QP*QT interaction in the level-1 

model (1jk, 2jk, and 3jk, respectively). When five charts were available for person k, 

there were five measures of the mean SC response (0jk) for person k, one for each chart. 

The explanatory variable CHART in each level-2 equation was centered about the mean 

chart number (M = 3). For five charts, the values of CHART were -2, -1, 0, 1, and 2, as 

shown in Table 3b.  The k subscript for a indicates that the  varied over subjects; that 

is, there were as many regression equations for a given level-2 outcome measure as there 

were subjects in an experiment. 

Level-2 Model for 0jk.  0jk was the mean of all of the SC responses to PL and 

relevant questions within a chart. HLM fit a line to the five values of 0jk for person k. 

The slope of the line for subject k was 01k and the intercept was 00k.  Since CHART was 

centered, 00k was the mean of all measured responses for person k.   

Habituation across charts was indicated by a negative value of 01k.  Figure 1 

shows one possible pattern of habituation of SC responses between charts.  In Figure 1, 

the mean response, 0jk, decreased over charts 1, 2, and 3.  The decrease in 0jk over 

charts would be indicated by a negative value of 01k.  

 Level-2 Model for 1jk. A second level-2 equation was specified for the mean 

within-chart slope (1jk; see dotted line in Figure 3).  HLM fit a line to the five estimates 
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of 1jk for person k.  The intercept of that line was 10k, and the change in the slopes over 

charts was indicated by 11k.  Since CHART was centered, the intercept, 10k, was the 

mean of all within-chart slopes for subject k.  In Figure 1, all within-chart slopes were 

negative and they were equal.  Therefore, a line connecting the within-chart slopes over 

charts would be flat (11k = 0) and the level of that line would be negative (10k < 0).  

 Figure 4 shows a different pattern of habituation over charts. In Figure 4, the 

mean within-chart habituation, 1jk, gets progressively less negative over charts.  By 

Chart 3, the mean within-chart slope has increased to zero.  In this case, the mean within-

chart slope would be negative (10k < 0), and the change in within-chart slopes would be 

positive (11k > 0). 

Figure 4. A pattern of habituation that shows a progressive increase in the within-chart 
slopes over charts 
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 Level-2 Model for 2jk.  2jk reflected the within-chart difference between the 

responses to PL and relevant questions for subject k (see Figure 3). 20k in the level-2 

model for 2jk was the mean value of 2jk for subject k, and 21k was the linear change in 

2jk over charts.  In Figure 2, the mean difference between PL and relevant questions was 

positive (20k > 0) for this subject, despite the lack of any appreciable difference in Chart 
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3. The PLT predicts that 20k will be positive for innocent subjects and negative for guilty 

subjects.   

In Figure 2, the difference between PL and relevant questions decreases over 

charts. Therefore, the slope of a line fit to the differences would be negative (21k < 0).  If 

this pattern were characteristic of innocent subjects, then it would be easier to verify a 

person’s truthfulness on the first chart than the third. 

Level-2 Model for 3jk.  3jk was a measure of the (linear X linear) interaction 

between Question Position and Question Type.  3jk would be zero if the growth curves 

for PL and relevant questions within a chart were parallel, as shown in Figure 1; 3jk 

would be negative if responses habituate more rapidly to PL questions, as shown in 

Figure 2; and 3jk would be positive if responses habituate more rapidly to relevant 

questions.  

The level-2 model for 3jk provides the mean QP*QT interaction across the charts 

for subject k, 30k. The model for 3jk also provides the change in 3jk over charts, 31k. 

Essentially, 31k reflects the three-way interaction between Charts, Question Position, and 

Question Type for subject k.  In the parlance of HLM, 31k is a cross-level interaction 

effect because a level-2 factor (CHART) moderates a level-1 effect. 11k and 21k also 

would be considered measures of cross-level interaction. 

In Figure 2, responses to PL questions always habituate more quickly than do 

responses to relevant questions. Thus, the subject mean value of 3jk would be negative 

(30k < 0).  However, the difference between the slopes for PL and relevant questions is 

constant over charts. Therefore, 31k = 0. 
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Residuals for Level-2 Models. The residuals (r.jk) for the level-2 models are 

deviations between the estimated .jk and the value predicted by the level-2 regression 

model. The within-subject variance among the observed residuals for a level-2 model 

may be pooled across subjects and tested for statistical significance.  A significant result 

would indicate that the level-2 model, which includes only a linear effect of Charts, does 

not account for all the reliable within-subject variance among charts in the associated 

growth parameter. Such a finding might indicate the presence of quadratic or higher-

order trend components. 

 
Level-3 Models.  The level-3 models were as follows: 
 
Level 3 
 
 
 
 
 
 
 

00k = 000 + 001 GUILT + u00k 
01k = 010 + 011 GUILT + u01k 
10k = 100 + 101 GUILT + u10k 
11k = 110 + 111 GUILT + u11k 
20k = 200 + 201 GUILT + u20k 
21k = 210 + 211 GUILT + u21k 
30k = 300 + 301 GUILT + u30k 
31k = 310 + 311 GUILT + u31k 

   
where,   
   
  was the grand mean response amplitude 

  was the main effect of Guilt 
  was the main effect of Chart 
  was the Chart X Guilt interaction 
  was the main effect of Question Position 
  was the Question Position X Guilt interaction 
  was the Question Position X Chart interaction 
  was the Question Position X Chart X Guilt interaction 
  was the main effect of Question Type 
  was the Question Type X Guilt interaction 
  was the Question Type X Chart interaction 
  was the Question Type X Chart X Guilt interaction 
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  was the Question Position X Question Type interaction 
  was the Question Position X Question Type X Guilt interaction  
  was the Question Position X Question Type X Chart interaction 
  was the Question Type X Question Position X Chart  X Guilt 

interaction 

 u..k were the deviations between fitted values and the obtained k 
 

At level 3, each level-2 effect served as a dependent variable. GUILT was a 

dichotomous variable that distinguished between innocent (coded 1) and guilty subjects 

(coded -1). Consequently, the intercept in each level-3 model (..0) was the grand mean of 

..k across all subjects.  The u..k were the deviations of subjects’ ..k about their respective 

group means.  Significant within-group variance of estimated u..k would suggest that 

other characteristics of subjects such as age or sex might be added to the level-3 model to 

explain the variance among subjects within the two treatment conditions. 

Proportions of Reliable Variance Explained 

 The HLM program reports maximum likelihood estimates of true-score variance 

as well as the ratio of true-score variance to observed-score variance for each outcome 

measure (reliability). Ordinarily, a hierarchical analysis begins with the analysis of an 

unconditioned or null model with no independent variables in the level-2 or level-3 

equations. Analysis of the unconditioned model provides baseline measures of reliability 

as well as statistical tests to determine if the variance within or between subjects is 

significant. If the variance of a growth curve parameter is not significant, then there is no 

need to develop a model with independent variables to explain that variance. It is only 

when there are reliable differences among measurement units that explanatory variables 

are added to the regression equation to account for those differences. 
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If an independent variable is added to a level-2 or level-3 regression equation and 

its coefficient is significant, the proportion of variance explained by the independent 

variable may be assessed by comparing the variances of model residuals before and after 

the independent variable has been included in the model.  In the present study, the 

proportion of reliable within-subject variance explained by CHART was assessed as 

follows: 

VAR (rjk) unconditioned – VAR (rjk) conditioned 
VAR (rjk) unconditioned 

 
where VAR (r.jk) unconditioned was the estimated reliable variance among model 

residuals without CHART in the level-2 equation, and VAR (r.jk) conditioned was the 

estimated reliable variance among model residuals with CHART in the level-2 equation.  

Likewise, the proportion of reliable between-subject variance explained by GUILT was 

assessed as follows: 

VAR (ujk) unconditioned – VAR (ujk) conditioned 
VAR (ujk) unconditioned 

 

where VAR (u.jk) unconditioned was the estimated reliable variance among subjects 

about the grand mean without GUILT in the level-3 equation, and VAR (u.jk) conditioned 

was the estimated reliable variance among subjects about their respective treatment group 

means. 

Results 

The analysis of SC data was conducted in two phases. In the first phase, an 

unconditioned model was developed and the model was simplified.  In the second phase, 

independent variables were added to the level-2 and level-3 equations to answer our 
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research questions. The analyses were conducted separately for Study A and Study B to 

assess the consistency of findings across experiments.   

Phase I 

An unconditioned model was analyzed with no level-2 or level-3 explanatory 

variables to determine if there was reliable within-subject variance among charts 

(VAR(r.jk)) or among subjects (VAR(u..k)). The unconditioned model was as follows: 

 
Level 1 Yijk = 0jk  +  1jk (QP)  +  2jk (QT)  +  3jk(QP*QT)  +  eijk 
  
Level 2 0jk = 00k  +  r0jk 
 1jk = 10k  +  r1jk 
 2jk = 20k  +  r2jk 
 3jk = 30k  +  r3jk 
  
Level 3 00k = 000  +  u00k 
 10k = 100  +  u10k 
 20k = 200  +  u20k 
 30k = 300  +  u30k 

 
00k was the mean level of the growth curves for subject k.  For example, in Study 

A, there were 5 charts and there were growth curves for probable-lie and relevant 

questions for each chart.  In that case, 00k was the mean level of the 10 growth curves for 

subject k. Since the repeated measures for each subject had been transformed to z-scores, 

and the mean of any set of z-scores is zero, the observed estimate of 00k was exactly zero 

for every subject.  Therefore, the results from each study indicated that the grand mean 

level (000) did not differ from zero and there was no reliable variance among individuals 

in their values 00k.  Since all 00k were zero, the mean, 000, was zero, there were no 

deviations about the mean (all u00k were zero), and the VAR(u00k) was zero (see the level-

3 equation for 00k).  Consequently, 00k was dropped from the model. 
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3jk was half the difference between the slopes of the growth curves for probable-

lie and relevant questions for chart j and subject k (see Figure 2).  The mean of the four or 

five 3jk for subject k was 30k.   To determine if 3jk would remain in the level-1 model 

three tests were conducted. The first test was to determine if there was reliable variance 

among the 3jk within subjects.  A 2 test indicated that the variance of 3jk about the 

subject mean (30k) or VAR(r3jk), was not significant. Thus, the difference between the 

slopes of the growth curves for probable-lie and relevant questions did not vary over 

charts.   

Next, a 2 test was conducted to determine if there were reliable differences 

among subjects in their mean values of 3jk. The variance of 30k about the grand mean 

(300) was VAR(u30k), and the 2 test of VAR(u30k) was not significant.  Therefore, 

differences among subjects in values of 30k were not significant.  Finally, 300 was tested 

and the grand mean QP*QT interaction effect did not differ from zero.  Since the grand 

mean did not differ from zero and there was no reliable variance in 3jk within or between 

subjects, the decision was made to drop QP*QT from the level-1 model. The same 

analyses, results, and conclusions regarding the QP*QT interaction were obtained for 

Study A and Study B.  Since QP and QT were centered and balanced, QP*QT was 

orthogonal to QP and to QT, and the presence or absence of QP*QT in the level-1 model 

had no effect on the parameter estimates for QP or QT. 

Within-Subject Variances 

2 tests were conducted to test if there was reliable within-subject variance among 

the levels and slopes of growth curves for the four or five charts. The r.jk were the 

deviations of 0jk, 1jk, and 2jk about their respective subject means 00k, 10k, and 20k. 
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The variances of the r.jk were significant in both Study A and Study B. Table 4 presents 

the results of the 2 tests for r0jk, r1jk, and r2jk. These findings indicate that the within-chart 

level of the growth curves (0jk), the mean within-chart slope of the growth curves (1jk), 

and the difference between the levels of growth curves for PL and relevant questions 

(2jk) changed over charts.  

Table 4.  2 tests of within-subject variances 
 

 
Parameter 

 
Study 

 
Variance 

 
Reliability 

 
df 


2 

 
p-value 

A .174 .615 336 1069 .00 r0 B .153 .559 360 1085 .00 
A .004 .186 336 507 .00 r1 B .008 .220 360 606 .00 
A .072 .398 336 622 .00 r2 B .029 .195 360 547 .00 

 
Between-Subject Variance 

 2 tests were also conducted to test for reliable between-subject variances. Table 5 

summarizes the results.  10k was the mean within-chart slope of the growth curves for 

subject k.  A 2 test indicated that the variance of 10k about the grand mean 100, 

VAR(u10k), was not significant for Study A or Study B. Since there was no reliable 

variance among subjects in mean within-chart slopes of growth curves, it would not be 

possible to use 10k to distinguish between guilty and innocent subjects.  

20k was half the mean difference between the levels of growth curves for PL and 

relevant questions for subject k.  The PLT predicts that innocent subjects will show 

stronger reactions to PL than to relevant questions, and guilty subjects will show stronger 

reactions to the relevant questions.  Therefore, positive values of 20k were expected for 

innocent subjects, negative values were expected for guilty subjects, and substantial 
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variance in 20k was expected.  As predicted, the 2 test of the variance of 20k about its 

grand mean 200, VAR(u20k), was significant for Study A and Study B. 

 
Table 5.  2 tests of between-subjects variances 
 

Parameter Study Variance Reliability df 2 p-value 
A .0010 .191 83 90 0.29 u10k B .0012 .131 119 131 0.21 
A .0402 .527 83 175 0.00 u20k B .0828 .689 119 386 0.00 

 
Phase II 

The hierarchical model was revised based on the results obtained in Phase I. The 

QP*QT factor was removed from the level-1 model, and 00k was removed from the 

level-2 model for 0jk. CHART was added to each level-2 model because the Phase I 2 

tests for r..k were significant.  In addition, Guilt was added to the level-3 models to 

provide tests of the research hypotheses.  

 
Level 1 Yijk = 0jk  +  1jk (QP)  +  2jk (QT)  +  eijk 
  
Level 2 0jk = 01k (CHARTjk)  +  r0jk 
 1jk = 10k  +   11k (CHARTjk)  +  r1jk 
 2jk = 20k  +   21k (CHARTjk)  +  r2jk 
  
Level 3 01k = 010 + 011 (GUILTk) + u01k 
 10k = 100 + 101 (GUILTk) + u10k 
 11k = 110 + 111 (GUILTk) + u11k 
 20k = 200 + 201 (GUILTk) + u20k 
 21k = 210 + 211 (GUILTk) + u21k 

 
Table 6 summarizes the results of analyses of the simplified hierarchical model 

that address the first seven research questions. The “Yes” or “No” answer to each 

research question is based on the outcome of a two-tailed t-test of the associated 

parameter at p < .05.  Where possible, for significant effects, Table 6 reports the 
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proportion of total variance that was true-score variance before CHART was added to the 

level-2 model or before GUILT was added to the level-3 model (reliability). The last 

column reports the proportion of that true-score variance that was explained by a factor or 

cross-level interaction.   

1.   Do physiological responses, Yijk, habituate within charts? 

1jk was the mean slope of the growth curves for probable-lie and relevant questions 

for chart j and subject k (see Figure 3). The mean within-chart slope for subject k was 

10k, and the grand mean within-chart slope was 100.  Examination of the results in Table 

5 revealed that the estimate of100 was significant for Study A, t(83) = -2.13, p < .05, and 

Study B, t(119) =  -4.69, p < .01, and it was negative.  SC responses habituated within-

charts. However, the effects were small. The proportion of observed score variance 

explained by Question Position was only .02 in Study A and .04 in Study B.   

Figure 5 shows the mean z-score for each question position across the five charts in 

Study A as well as the mean z-scores across the four charts in Study B. The data in 

Figure 5 reveal a systematic decline in the amplitude of SC responses within the first two 

charts. Thereafter, the slopes of the growth curves approach zero. 
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Table 6.  Summary of results of statistical tests of research hypotheses1.   

 

  Research Question Parameter ANOVA effect Study Answer Estimate 

Proportion 
true score 
variance 

Proportion 
true score 
variance 

explained 

A Yes -0.017     1 Do physiological responses 
habituate within charts?  

 QP 
B Yes -0.042     

A Yes -0.118 0.615 0.085 2 Do physiological responses 
habituate across charts? 

 Chart 
B Yes -0.280 0.559 0.830 

A Yes 0.015 0.186 0.892 3 Does within-chart habituation 
vary over charts?  

 QP X Chart 
B Yes 0.056 0.220 0.760 

A Yes 0.374 0.527 0.766 4 
Does Guilt moderate the effects 
of Question Type on mean levels 
of growth curves? 

 Guilt X QT 
B Yes 0.400 0.689 0.456 

A No -0.012 - - 5a Does Guilt moderate within-chart 
habituation rates? 




QP X Guilt 
B No 0.021 - - 

A No -0.008 - - 5b 
Does Guilt moderate changes in 
within-chart habituation rates 
over charts? 




QP X Chart X Guilt 
B No -0.030 - - 

A No -0.068 - - 5c Does Guilt affect the rate of 
habituation over charts? 




Chart X Guilt 
B No 0.060 - - 

A No - - - 6 
Do within-chart habituation rates 
vary as a function of Guilt and 
Question Type? 

 QP X QT X Guilt 
B No - - - 

A Yes -0.127 0.398 0.365 7 
Does Guilt affect between-chart 
habituation rates to PL and 
relevant questions? 

 QT X Chart X Guilt 
B Yes -0.104 0.195 0.304 

1Note: Only linear effects were considered for factors with more than 1 degree of freedom (QP and Charts). 
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Figure 5:  Mean SC amplitude over question positions 
Study A (N=84)
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2.  Do physiological responses, Yijk,, habituate across charts? 

jk was mean level of the growth curves for chart j and subject k (see Figure 3).  

The linear change in jk from one chart to the next for subject k was 01k, and the grand 

mean change in the level of the growth curves from one chart to the next for all subjects 

was 010. 
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Examination of the results for Question 2 in Table 6 reveals that there was a 

significant drop in the level of the growth curves over charts in Study A, t(83) = -5.31,  p 

<.05, and in Study B, t(119) = -8.44, p < .05.  In Study A, SC amplitude dropped .12 

standard deviations between charts, and in Study B, SC amplitude dropped .28 standard 

deviations between charts.  The proportions of reliable variance in jk in the two studies 

were comparable, but CHARTS accounted for considerably more of the reliable variance 

in Study B (.83) than in Study A (.08).  A straight line better fit the four data points 

(charts) in Study B than the five points in Study A. Examination of Figure 5 suggests that 

there was a strong quadratic component to the growth curve defined by the five chart 

means. 

3.   Does within-chart habituation vary over charts? 

The data in Figure 5 indicate that within-chart slopes varied systematically across 

charts.  Specifically, habituation in the first chart was quite dramatic, and there was 

progressively less evidence of habituation in latter charts.  

1jk was the mean within-chart slope for chart j and subject k (see Figure 2).  The 

linear effect of CHART on within-chart slopes for subject k was 11k, and the grand mean 

effect of CHART on within-chart slopes across all subjects was 110.  

The results in Table 6 indicate that the within-chart slope varied linearly as a 

function of charts.  The slope changed positively at a mean rate of .02 standard deviations 

in Study A, t(83) = 2.51, p < .05, and at a rate of .06 standard deviations in Study B, 

t(119) = 5.06, p < .05.  Since 110 was positive, it indicated that the within-chart slope 

became less negative and approached zero over the course of the polygraph examination.  
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Although relatively little of the observed variance in 1jk was reliable, CHARTS 

explained most of the reliable variance. 

4.  Does Guilt moderate the effects of Question Type on mean levels of growth curves? 

2jk was half the difference between the level of the growth curves for probable-

lie and relevant questions for chart j and subject k (see Figure 3). The mean effect of 

Question Type across charts for subject k was 20k.    

Decisions concerning deception on a polygraph test are currently based on mean 

differences in physiological responses to probable-lie and relevant questions; i.e., 20k.    

As expected, the effect of Guilt on the difference between probable-lie and relevant 

questions (201) was significant in Study A, t(83) = 8.46, p < .05, and in Study B, t(119) = 

7.72, p < .05. 

5aDoes Guilt moderate within-chart habituation rates? 

 Figure 6 displays pooled within-chart growth curves for guilty and innocent 

subjects in Study A and Study B. Habituation was evident within charts for guilty and 

innocent subjects, but there was little difference between guilty and innocent subjects in 

the rate of habituation.  These observations were confirmed by statistical analysis.  

 
Figure 6.  Mean within-chart growth curves for guilty and innocent subjects  
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1jk was the mean within-chart slope for chart j and subject k, 10k was the subject 

mean within-chart slope, and 101 was effect of Guilt on those subject means.  As shown 

in Table 5, the test of 101 was not significant for Study A or Study B.  There was no 

evidence that Guilt moderated linear growth rates within a chart.   

5b.  Does Guilt moderate changes in within-chart habituation rates over charts? 

 We also evaluated the possibility that guilty and innocent subjects could be 

distinguished in terms of the rate of change in within-chart slopes over charts.  111 

provided a test of the Question Position X Chart X Guilt interaction. The results in Table 

6 indicate that 111 did not differ from zero. There was no evidence that Guilt moderates 

changes in within-chart growth rates over charts.   

5c.  Does Guilt affect the rate of habituation over charts? 

0jk was the mean level of the growth curves for chart j and subject k.  01k was 

the slope of a line fit to the four or five values of 0jk for subject k.  01k provided an 

index of between-chart habituation, and 011 provided a test of the difference between 

guilty and innocent subjects in their values of 01k.  

Figure 7 displays the mean level of growth curves over charts for Study A and 

Study B.  Habituation between charts was evident for guilty and innocent subjects in both 

studies.  However, the test of 011 revealed no difference in the rate of habituation for 

guilty and innocent subjects in either study. These results suggest that Guilt does not 

affect habituation across charts. 
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Figure 7.  Mean levels of growth curves over charts 
Study A (N=84)
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6. Do within-chart habituation rates vary as a function of Guilt and Question Type?  

Analysis of the unconditioned model in Phase 1 indicated that the within-subject 

and between-subject variances associated with the Question Position X Question Type 

interaction (VAR(r3jk) and VAR(u30k) ) were not significant. Since there was no reliable 

variance in the measures of Question Position X Question Type interaction, there was no 

reason to test if within-chart habituation rates varied as a function of Guilt and Question 

Type. 

7.  Does Guilt affect between-chart habituation rates to probable-lie and relevant 

questions? 

 Figure 8 plots the difference between the levels of the growth curves for probable-

lie and relevant questions for guilty and innocent subjects.  Examination of Figure 8 

indicates that the absolute difference between probable-lie and relevant questions 

decreased over charts. 
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Figure 8.  Mean difference between SC responses to probable-lie and relevant questions 
for guilty and innocent subjects 
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 In the hierarchical model, 2jk was half the difference between the level of the 

growth curves for probable-lie and relevant questions for chart j and subject k (see Figure 

3). The linear effect of CHART on 2jk for subject k was 21k.  The data in Figure 8 

suggest that the values of 21k tended to be negative for innocent subjects and positive for 

guilty subjects. The test of the Question Type X Chart X Guilt interaction was a test of 

the difference between the mean values of 21k for guilty and innocent subjects.  The 

difference between the means was 211.  

The results in Table 5 indicate that 211 differed significantly from zero and was 

negative for Study A, t(83) = -4.11, p < .05, and in Study B, t(119) = -3.23, p < .05.  The 

value of 211 was negative because innocent subjects had high scores on GUILT (1) and 

negative scores on 21k, whereas guilty subjects had low scores on GUILT (-1) and 

positive scores on 21k.  

8. Does reliable variance among individuals remain in means and slopes after 

controlling for Guilt, Chart, Question Type and Question Position? 
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Table 6 shows the results of 2 tests of the residual variances for each of the 

growth curve parameters in the hierarchical model.  For all but two parameters, the 2 test 

indicated that the residual variance exceeded chance levels of variability. After 

controlling for Guilt, Chart, Question Type, and Question Position, reliable variance 

remained in most of the growth parameters that might be explained by other variables in 

future studies.   

Table 6.  2 tests of residual variances for growth curve parameters in the hierarchical 
model 
 

Parameter Study 
Residual 
Variance df 2 p-value 

Does 
Variance 
Remain? 

A 0.159 336 891.19 0.00 Yes r0 B 0.026 360 561.70 0.00 Yes 
A 0.000 252 407.82 0.00 Yes r1 B 0.002 240 485.09 0.00 Yes 
A 0.046 252 564.60 0.00 Yes r2 B 0.020 240 526.27 0.00 Yes 
A 0.014 82 129.00 0.00 Yes u01 B 0.038 118 282.94 0.00 Yes 
A 0.001 82 105.70 0.04 Yes u10 B 0.003 118 155.38 0.01 Yes 
A 0.001 82 134.95 0.00 Yes u11 B 0.002 118 139.54 0.09 No 
A 0.009 82 106.12 0.04 Yes u20 B 0.045 118 271.93 0.00 Yes 
A 0.004 82 105.00 0.04 Yes u21 B 0.003 118 116.30 > 0.50 No 

 
9.  Can slope parameters can be used to increase the accuracy of computer diagnoses of 

truth and deception.  

 Aside from mean differences between probable-lie and relevant questions (20k), 

the only slope parameter that reliably distinguished between guilty and innocent subjects 

was 21k.  21k was the linear change in the difference between SC responses to probable-

lie and relevant questions over charts (see Figure 7).  For each study, a traditional 

hierarchical regression analysis was performed to test if this growth parameter could be 
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used in combination with other physiological measures to improve discrimination 

between the groups.  

 The statistical model currently used by the Computerized Polygraph System 

(CPS) to discriminate between truthful and deceptive subjects uses mean differences in 

the magnitude of respiration, SC, and cardiovascular responses to probable-lie and 

relevant questions (Kircher & Raskin, 2001). Those three measures were extracted from 

the polygraph charts and were used as predictor variables in a multiple regression 

equation to predict a dichotomous variable that distinguished between guilty (coded -1) 

and innocent (coded 1) subjects.   

 Ordinary least squares estimates of 21k were then added to the regression 

equation, and the regression coefficient for 21k was tested for statistical significance.  

The results are summarized in Table 7. 

 
Table 7.  Point-biserial (rpb) and standardized regression coefficients for traditional 
physiological measures and a growth parameter (21k) 
 
 Study A Study B 
Physiological 
Measure 

 
rpb 

Std Regression 
Coefficient 

 
rpb 

Std Regression 
Coefficient 

SC amplitude   .76**       .67**   .57**      .30** 
BP amplitude   .40**   .05   .45**   .11 
Respiration .23*    .14*   .53**       .29** 
est 21k -.41** -.14 -.30** -.12 
** p < .01 
  * p < .05 
 
 As expected, bivariate correlations with Guilt were significant for all traditional 

measures of mean differences in the magnitude of physiological responses to probable-lie 

and relevant questions.  In addition, the change in the difference between SC responses to 

probable-lie and relevant questions from one chart to the next (21) was significantly 
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correlated with the criterion in both studies.  However, the unique contribution of 21 to a 

regression equation that contained the traditional measures did not achieve statistical 

significance for either study.  Even if the standardized regression coefficients for 21 had 

been significant, the addition of 21 increased the R2 from .60 to .62 in Study A and from 

.39 to .41 in Study B.  Correlations among the physiological measures and the criterion 

are presented in Appendix A. 

Discussion 

The results of the present study confirmed several predictions, the most important 

of which was that truthful and deceptive individuals react differently to probable-lie and 

relevant questions.  In two independent samples, we found that innocent subjects reacted 

more strongly to probable-lie comparison questions, and guilty subjects reacted more 

strongly to relevant questions. The present study also demonstrated that SC responses 

habituated over the course of a polygraph examination. Habituation was evident within 

and between charts. It demonstrated that SC responses of guilty and innocent subjects to 

probable-lie and relevant questions habituated at different rates.  Responses to probable-

lie questions habituated faster for innocent subjects, and responses to relevant questions 

habituated faster for guilty subject.  Consequently, differences between SC responses to 

probable-lie and relevant questions became smaller and approached zero over charts. 

Since differences between probable-lie and relevant questions decreased over charts, SC 

data collected near the beginning of the polygraph test may be more diagnostic than those 

collected near the end.  Finally, growth curve analysis revealed diagnostic differences in 

the rates of habituation. However, when used in combination with traditional measures of 
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mean differences in responses to probable-lie and relevant questions, habituation rates did 

not significantly improve the accuracy of computer classifications. 

Growth curve analysis produced results that were consistent with already 

established techniques for assessing truth and deception. One research question asked if 

the mean levels of growth curves were affected by the Question Type X Guilt interaction.  

Considerable prior research predicted effects of Guilt on within-subject differences 

between probable-lie and relevant questions. Indeed, polygraph decisions are based on 

such differences. Although that finding was not new, the HLM analysis did provide 

useful psychometric information about differential reactivity that is not commonly 

assessed.  For example, Guilt accounted for 73% of the reliable variance in differential 

reactivity in Study A and 45% of the reliable variance in Study B.  Thus, there was 

reliable variance in differential reactivity that was not due entirely to the subjects’ 

deceptive status. Other individual differences, such as sex, age, intelligence, or 

interactions of such factors with Guilt, affected subjects’ differential reactivity to 

probable-lie and relevant questions. Knowledge of major source(s) of variance in 

differential reactivity other than Guilt could be used to develop and test theory and to 

improve the accuracy of diagnoses.  For example, further study might reveal that 

differential electrodermal reactivity to probable-lie and relevant questions is more 

diagnostic for young males with low to moderate intelligence than for older exceptionally 

bright females.   

The finding that Guilt accounted for less of the reliable variance in Study B (45%) 

than Study A (73%) might be due to differences in subject characteristics or aspects of 

the research design. For example, Study B contained a higher percentage of Blacks 
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participants (20%) than did Study A (2%). In Study B, guilty subjects committed the 

mock crime and returned three days to two weeks later for their polygraph examination   

In Study A, subjects reported immediately for their polygraph examination. 

In the present study, growth curves pooled across probable-lie and relevant 

questions did not distinguish between guilty and innocent subjects. Since there was no 

evidence that simple habituation rates could be used to distinguish between the groups, 

there appears to be no advantage in retaining separate growth curves for probable-lie and 

relevant questions.  Mean differences between probable-lie and relevant questions and 

changes in differences across charts appear to capture all of the diagnostic variance in SC 

measures.  As such, the hierarchical model could be simplified by using difference scores 

as the dependent variable and dropping Question Type as a factor from the level-1 model.   

Over the course of the present study, other interesting questions arose that could 

be addressed with growth curve analysis.  For example, polygraph examiners sometimes 

refer to probable-lie questions between charts to focus attention on them and reduce the 

risk of false positive outcomes; e.g., “Did anything come to mind when I asked if you 

ever lied to get out of serious trouble?” (Raskin & Honts, 2001).  Although responses to 

probable-lie questions habituate within charts, they may recover (dishabituate) somewhat 

between charts. Piecewise growth curve analysis may be used to test the hypothesis that 

such statements by the examiner produce a discontinuity in the habituation trajectory for 

probable-lie questions between charts (Bryk & Raudenbush, 1991; J. Butner, personal 

communication, July 2002).   

A lack of discontinuity between charts might argue for further simplification of 

the model. Charts could be omitted as a factor in the model.  Growth curves would then 
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be defined by repeated measures from the first presentation of a probable-lie or relevant 

question on the first chart to the last presentation on the last chart. By omitting Charts as 

a factor, the analysis would proceed as a two-level hierarchical model rather than a three-

level model. A quadratic growth parameter then might be added to the level-1 model. 

It is worthwhile to reiterate that it would be possible to combine the data from 

Study A and Study B and perform a single analysis. Study would be added as a between 

group factor at level 3, and it would allow for tests of main and interaction effects of 

Study on the dependent variable. Such an analysis would be impossible with repeated 

measures ANOVA because different numbers of charts were obtained from the subjects 

in the two experiments, and RMANOVA requires that measurement occasions be crossed 

with subjects.  In HLM, measurement occasions are nested within subjects rather than 

crossed with subjects.  Thus, if the number of measurement occasions varies over 

subjects, it is a matter of dealing with unequal n’s, not missing values.  

If habituation reduces the effectiveness of the PLT, then efforts may be made to 

retard its effects.  For example, the wording of questions may be modified slightly 

between charts.  In this way, subjects would have to process the meaning of each new 

question before they answer.  Even if the wording of only one or two questions were 

changed, it would require subjects to pay more attention to all of the questions and may 

reduce the effects of habituation.  

It is important to note that the present findings might not generalize to polygraph 

examinations conducted on actual criminal suspects.  The present study was conducted 

using data from two mock crime experiments.  Although there was consistency in the 

findings from the two experiments, the findings might differ if growth curve analyses are 
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conducted with data from actual criminal suspects.  In addition, our growth curve 

analyses were limited to SC measurements. It is unknown if the pattern of habituation 

observed for SC responses would be found for other physiological measures.   

In conclusion, the results of growth curve analysis revealed that in laboratory 

experiments, SC responses habituate over the course of probable-lie polygraph test.  

Although differential rates of habituation were diagnostic, when combined with 

traditional measures of mean differential reactivity, they did not improve the accuracy of 

computer decisions.   

Growth curve analysis may be used to test a number of interesting hypotheses that 

were not evaluated in the present study.  For example, it might be used to determine if 

changes in physiological measures other than SC can be used to improve the accuracy of 

computer decisions. It might be used to test if the adverse effects of habituation can be 

reduced by making small changes in the wording of questions over charts and increasing 

the cognitive demands of the task.  Alternatively, it might be used to test if statements 

made by the polygraph examiner to enhance the signal value of probable-lie questions 

before each chart function as expected and interrupt the trajectory of the growth curves 

for probable-lie questions.  Moreover, if such statements affect only innocent subjects, 

measurements of those effects would be diagnostic and might add to a computer model 

for detecting deception. 



  44 

Appendix A 

Intercorrelations among physiological measures and the guilt/innocence criterion for 
Study A (above the principal diagonal; N = 84) and Study B (below the principal 
diagonal; N = 120) 

 
 Guilt SC Cardiograph Respiration Est 21K 
Guilt 1.00 .76 .40 -.23 -.41 
SC .57 1.00 .49 -.11 -.37 
Cardiograph .45 .60 1.00 .02 -.17 
Respiration -.53 -.55 -.44 1.00 -.09 
Est 21K -.30 -.33 -.27 .18 1.00 

 
Correlations above the principal diagonal beyond +/- 0.21 were significant at p < .05 
Correlations below the principal diagonal beyond +/- 0.18 were significant at p < .05 
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