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I n t r o d u c t i o n

Science fairs are an integral part of our culture here in the United States.  It seems almost 

everyone has experience with them in some form or another.  Many have created their own 

experiments and have displayed them in a science fair held by their public school.  Others 

have attended science fairs to support others such as their children or friends.  Parents, 

teachers, and other mentors become involved as they help students with projects.  Still, 

others have been recruited to fulfill the role of a judge.  In any case, virtually everyone can 

relate to science fairs.  They're part of our cultural experience.  One might even venture to 

say that they share equal status with other traditions that decorate the lives of our youth, 

much like dodge ball in gym class, movies with popcorn, and senior prom.

The Beginnings of Science Fairs

Some might say America saw its most rudimentary instances of scientific exhibition as early 

as the 1800s, when county fairs displayed the latest farming inventions (Cox, 2007).  But 

when did the science fair as we know it begin?  How did it become an academic competition, 

and how did it become so popular?

The men behind science fairs.  Edward Willis Scripps was a journalist and businessman 

who lived in the late 1800s and early 1900s.  His career in journalism actually started out 

when he began working at his brother's newspaper as a young man.  As the years passed, 

Scripps became more interested in managing newspaper companies rather than simply 

working in them and, with financial help from his family, he began to acquire or create from 

scratch a number of local newspapers.  Although he would own these smaller companies, 

Scripps would allow them a great degree of license in how they ran themselves.  These 

businesses eventually grew into a large empire which is known today as the E. W. Scripps 
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Company ("E. W. Scripps," 2009).

Later in life, Scripps would meet William Emerson Ritter.  Ritter was a scientist whose 

specialty was in biology and zoology.  He took up several teaching positions throughout his 

academic career.  During this period he had the opportunity to read and study science in 

great detail.  Ritter took advantage of these opportunities.  By 1881, he had obtained a 

teaching position that afforded him the time to study the sciences with more intensity than 

he had before.  He became enthralled with the way science could view the world around him, 

and he began to feel that an extension of this viewpoint to worldwide issues would be the 

solution for much of the problems and suffering in the world.  Thus William Ritter became a 

vigorous advocate of scientific thought and its universal application (“William Emerson 

Ritter,” 2009).

In 1903, E. W. Scripps and another family member donated money to help establish the 

Marine Biological Association of San Diego, which still exists today as the Scripps Institution 

of Oceanography.  While at first Scripps wasn't excited about the endeavor, he later became 

friends with its founder, William Emerson Ritter (“E. W. Scripps,” 2009).  Together they 

began sharing ideas about projects ongoing at the association.  This sparked within E. W. 

Scripps a deeper interest in science – and now, because both men had a strong friendship 

and a common interest, it would only be a matter of time before Scripps' financial resources 

and Ritter's scientific expertise would accomplish even greater things.

The Science Service and Science Talent Search.  And so they did.  In 1921, they formed 

the Science Service, an organization with an objective to bring advances in science to the 

public eye.  As some in the scientific community did not believe this would be very 

constructive, the view of Scripps and Ritter was in the minority.  However, they felt strongly 

that everyone should have the chance to be informed of current developments in science 



Science Fair “Fairness” 5

(“E. W. Scripps,” 2009).  They began publishing a newspaper called the Science News – a 

newspaper for the layperson, and printed by the Science Service itself.  This opened the door 

for the public to stay apprised of the current scientific advancements of the day.

But what transpired a couple of decades later is actually why we might well consider these 

gentlemen the founders of modern science fairs as they exist today.  Although Scripps 

passed away in 1926, Ritter maintained his involvement in the Science Service, the passion 

the two men held for scientific propagation remained intact, and the Science Service 

continued onward.  In 1941, the organization worked with the American Institute of the City 

of New York to initiate local “science clubs” across the nation.  These clubs were created to 

encourage students to participate in the sciences more, and with the hope that eventually 

more of these students would aim their careers in that direction (History of Society for 

Science & the Public, 2009).  Even more significantly, however, the Science Service would 

collaborate with Westinghouse in 1942 to hold the first ever “Science Talent Search.”  This 

was the event that began science fairs.  The Science Talent Search operated much the same 

way a modern science fair does; all of the main elements of a science fair existed in the first 

Science Talent Search: students across the nation were invited to submit projects for a 

competition, and the winners were awarded various prizes.  Even today the Science Talent 

Search is held each year – now with Intel – and prizes from laptops to scholarships are 

awarded.

Gaining popularity.  The 1950s was an eventful era and witnessed a great increase in the 

popularity of science fairs.  Advances in nuclear physics, space exploration, computers, and 

television were exciting, and the general public became more interested in science and 

technology.  In the 1960s and 1970s, science fairs started to become much more 

commonplace in schools (R. and E. Adams, personal communication, May, 2009).
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Now we see science fairs held regularly across the United States and the rest of the world. 

Parents and teachers enjoy helping students while students have fun, learn, and even grow 

in how they think about the world (Smith, Maclin, Houghton & Hennessey, 2000).

Judging Science Fairs

Many if not most science fairs host multiple categories, sometimes being based on student 

demographics such as age or school division.  Other times categories are created to divide 

student projects into subject areas, ensuring that a broad sample of scientific disciplines are 

represented.  Categories may also be created based on different attributes of a project such 

as originality, personal effort, level of complexity, or clarity in articulation.  This can be done 

to allow for more students to be recognized and awarded for their work.  But however the 

event is organized, there is one element common among all science fairs: judging.

Judges are recruited, usually from local communities, to score student projects based on 

some measure of quality, inventiveness or creativity.  Of course, definitions of quality or 

creativity can fluctuate, and can surely be debated on many different levels.  So with a little 

contemplation one might well wonder: How are science fairs judged fairly?  Or perhaps the 

first question is actually: Are they even judged fairly in the first place?

“Fairness.”  That depends on what 'fair' means.  Is one aspect of fairness more important 

or more measurable than another?  To statistically probe a science fair for bias, which will be 

the purpose of this study, it will be practical to consider variables that are easily scaled or 

that are already measured, such as the student's age group, the judge's area of expertise, 

or the scores awarded to a project.  Aside from basic student information, then, most of the 

statistics that can be derived from a science fair are about the scores and judges 

themselves.  It may also be intuitive to note that the fairness of any judgment will have to 

do with the judge – so any analysis of fairness will focus on various aspects of judging and 
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judges themselves.

How does a community prepare a judge to judge fairly?  There are those who feel that a 

standard should be followed for how judges interact with students: that is, that there should 

be a dictation on some minimum time allotted for a judge or group of judges to spend with 

each student.  The Greater San Diego Science and Engineering Fair gives each student 

fifteen to twenty minutes with a team of five or six judges – which teams have been 

carefully 'balanced' with members selected from a healthy variety of scientific disciplines and 

experience levels (Frederickson & Mikkelson, 1979).  This could be advantageous.  From 

Classical Test Theory, we know that a larger group of judges will tend to produce an average 

score that will be more accurate in its measure of the science project's “true score,” having 

less random error than would an average score produced by a smaller group of judges 

(Crocker & Algina, 1986).

Another tactic many communities utilize is to lay out specific criteria for its judges to follow 

when rating a student project.  For example, the Salt Lake Valley Science and Engineering 

Fair holds a training session for its volunteer judges and gives them a rubric from which to 

make evaluations (J. Ostrander, personal communication, January, 2009).  This is an attempt 

to ensure that the criteria used in appraising each science project are the same for every 

judge.

But even after such pains are taken to ensure that science fairs are judged with high 

standards of quality and equality, how do we know those judges are scoring fairly?

Judges.  Of course the premise for any concern regarding whether science fairs are scored 

fairly stems from the inescapable fact that the mechanism for scoring science fair projects is 

human judgment.  With all the efforts to standardize judgment and use an enlightened set of 
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criteria for assessment, there are elements of human judgment involved in that assessment. 

However well the fair is administered and however well the judges have been trained, there 

will be errors in judgment.  What happens when some judges are in a better mood than 

other judges on the day of the fair?  Or what if a judge is assigned to a student project that 

shares topics in common with that judge's field of interest?  Would she give a generous score 

to the student because the project is very interesting to her or, if she were aware that such 

an effect were entirely possible, would she try to score more strictly in order to “balance 

out” that effect?  Or would a strict judgment reflect the fact that her specialized knowledge 

has given her the insight to see flaws that judges with other specialties would have missed? 

Or, could it be that scores she awards to projects in her area of expertise actually vary more 

than those she gives outside it?  Maybe her intimate knowledge of a topic allows her to 

judge more discriminately in it, shifting the score further up or down according to more 

subtle details other judges would not see.

Another angle to consider is the fact that judges do not come to the table with the same set 

of academic experiences, or even level of academic achievement.  Will the ones with higher 

educational backgrounds tend to be more harsh because they are conditioned to expect 

more, or will they realize this and overcompensate by not expecting as much as other 

judges?  Or would the scores they give vary more or less than those given by judges with 

less advanced degrees?

Similar to questions such as these is one involving a possible age effect.  Are younger 

students more likable in the eyes of some judges than they are to other judges?  And again, 

what if a judge realizes that younger children are more adorable to her, and she feels 

obligated to 'correct' her judgment for emotional bias?  Will she under or over-correct her 

score while taking into account her emotions?
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While examining specific questions such as these, it may also be informative to investigate 

the attributes of judges who score typically lower or higher than those of other judges.  Do 

judges who give lower scores than other judges on average have certain characteristics in 

common with each other?  Do judges who score higher on average tend to be those of a 

certain profession, or do they work for smaller or larger companies?

These are the questions this study will address.  For convenience they are listed more 

parsimoniously below:

For judges who judge both inside and outside their own areas of expertise:

• Is there a significant difference between the scores they give inside versus 

outside their areas of expertise?

• Do scores vary significantly more or less when given inside or outside areas of 

expertise?

When judges are grouped by level of education:

• Is there a significant difference in scoring between groups?

• Do all the scores given by a single judge vary significantly more or less depending 

on the group to which the judge belongs?

For younger versus older students:

• Is there a significant difference between scores?

Looking at deviations of judges' scores from projects' mean scores:

• Are there common characteristics among judges who score higher or lower than 

the average scores given by other judges of the same projects?
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While we don't have the resources to answer these questions for all science fairs, of course, 

we can turn to the local arena to gain some insights.

The SLVSEF

The Salt Lake Valley Science and Engineering Fair (“SLVSEF”), mentioned previously, began 

in 2002 and is held annually in Salt Lake City, Utah by the Utah Science Center and the 

University of Utah.  It attracts participating students from schools all over the Salt Lake 

Valley.  Elementary, junior and senior high schools are all invited.  Judges come from a wide 

variety of educational backgrounds, professions and scientific interests.  The organizers of 

the SLVSEF have provided four years of quantitative data from the fair (2006, 2007, 2008 

and 2009) containing information about students, judges and project scores.  These data will 

serve as the data-set for testing the previously stated research questions.
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M e t h o d s

Data Description and Preparation

In the SLVSEF, each judge scores multiple student projects, and each student project is 

scored by multiple judges, although not all possible pairings of judges and student projects 

occur.  Judges initially complete a form which allows them to designate their first, second 

and third favorite subjects in which they would prefer to judge.  Officials attempt to assign 

judges to projects belonging to these subjects, but most judges are also assigned to other 

projects as well.

Here is an overview of the four years of original data:

2006 2007 2008 2009

46 schools 59 schools 62 schools 61 schools

82 teachers 94 teachers 110 teachers 162 teachers

191 student projects 258 student projects 217 student projects 291 student projects

175 judges 162 judges 124 judges 178 judges

The data received was in spreadsheet format, consisting of 3 worksheets for each year: 

student projects, judges, and a score table matching every score with a judge ID and a 

project ID.  For every student project, the information recorded consists of the individual 

student identifiers (name and science fair ID), the name of the project, the category in 

which it was placed (Behavioral Science, Chemistry, etc.), the teacher or mentor involved in 

the project, and the student's school and division (elementary, junior or senior).  The 

available data about each judge consists of individual identifiers (name and judge ID), 
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degree level, areas of expertise, years of experience in teaching or industry, any previous 

judging experiences, and the judges' first, second and third choices of categories in which 

they would prefer to judge.  For 2008 and 2009, the judges' place of residence and current 

employment is also recorded.

Because some of the students' mentor names were written differently for the same person 

(for example, "Mr. Ken Baker" and "Kenneth Baker" of the same school), all such entries in 

my copy of the data (the "processed data") were edited so the mentors' names would be 

consistent.  At times the school's website was consulted when it was not obvious whether 

there were in fact two mentors with similar names.  This was also the case with school 

names.  This was done to avoid analysis errors that would have otherwise occurred if there 

were more mentors or schools in the data than were actually involved in the fair.

The 2006 judge data was recorded using fourteen scientific categories for which judges could 

claim an expertise or propensity.  These were:

behavioral science
biochemistry
botany
chemistry
computer science
earth science
engineering
environmental management
mathematics
medicine
microbiology
physics
space science
zoology

The original 2007 data did not use these categories.  The 2008 judge spreadsheet listed 

them but did not use them, while the 2009 judge spreadsheet did.  Since those categories 

seemed logical and were the most commonly used categorization scheme throughout all four 

years of the original data, it was decided that the best way of classifying judges would be to 

use this categorization scheme for all four years of data.  Where judges had not been 
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categorized using those fourteen categories in the raw data, the processed data had to be 

adjusted so that all judges would be classified into those categories.  This was accomplished 

by examining each of those judges by their education, interests and employment, and then 

assigning the judges to as many of those categories as seemed appropriate.  For example, 

one 2008 judge lists his expertise areas as “Meteorology / Hydrology,” so he was assigned 

into the 'earth science' and 'environmental management' categories.  Another listed her 

expertise areas as “biochemistry, structural biology and chemistry” and was assigned into 

the 'biochemistry,' 'chemistry' and 'microbiology' categories.

The original data included some judges whose educational or professional degrees were 

pending completion.  For the sake of simplicity, the processed data lists those judges as if 

they had completed those degrees.  No distinction is made in the processed data between a 

Bachelor of Arts and a Bachelor of Science, or between a Master of Arts and a Master of 

Science.  Those judges who were originally listed as medical doctors, pharmacists, or 

lawyers were listed in the processed data with those who have PhDs.
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Descriptions of Analyses

Judges who judge both inside and outside their own areas of expertise.   Some of the 

SLVSEF judges were only assigned student projects that matched their own area of 

expertise, while other judges were only assigned projects outside their area of expertise. 

The rest of the judges had the opportunity to judge student projects both in and out of their 

area.  Considering this, a decision was made to use only the scores of the judges who judged 

both in and out of their areas of expertise.  Were we to attempt to include all judges in this 

analysis, we would need to consider 'expertise' as a factor with two levels: judging 'within' 

or 'without' area of expertise.  But because so many judges did not have the opportunity to 

judge both in and out of their area, while so many others did, neither a “within subjects” nor 

a “between subjects” approach would be appropriate.  However, using only those judges who 

judged both in and out of their area, we can meaningfully compare scores resulting from 

both types of judging (in and out of the judge's area of expertise).  By averaging scores for 

both types of judging for each judge, we will have two mean scores for every judge.  These 

will of course represent an overall bearing on how that judge scored in and out of her 

expertise.  Essentially, this is done to avoid nesting effects from other factors such as 

'student project'; in other words, by averaging scores we will not be dealing with how 

student projects within each judge and judgment type may or may not be correlated.

Using the same reasoning for grouping scores together as a mean within each judge and 

type of  judging, standard deviations will also be utilized.  These will allow us to compare 

whether the dispersion of scores, in versus out of judges' areas of expertise, is significantly 

different.

This data can be examined using a correlated samples t-test, where the subjects are the 
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judges, and the two factor levels will be judging 'within' and judging 'without' area of 

expertise.  In the case where the data does not meet the assumptions, or standards, 

required for the use of a t-test – namely, normality and homogeneity of variance – the 

Wilcoxon Signed Rank (Matched Pairs) test will be used as a nonparametric alternative.

Judges grouped by education level.  The education level of each judge is reported as 

either a bachelor's degree, master's degree, or doctorate degree.  Although an ideal data set 

might have all judges judging student projects from all divisions (elementary, junior, and 

senior), most judges in the existing data set judge exactly two out of the three student 

divisions: most of the time either elementary and junior, or junior and senior.  Very few 

judges actually judge projects from all three divisions.  Because of this, an ideal study 

cannot be performed in which scores are nested within student divisions, and where student 

divisions are nested within judges.

For this question then, an approach similar to the one made in the previous question will be 

helpful.  Again, it will make sense to look at the average scores given by the judges.  By 

ignoring student division (elementary, junior or senior) and looking only at the judge's 

education level as the factor under consideration, we will at least be able to tell whether 

there is some effect on scores related to education level.

As with the question about areas of expertise, this analysis will be carried out twice for each 

year of data: once using the means and once using the standard deviations of each judge's 

scores.  Again, this will allow us to examine whether or not the judges' education level 

affects the mean of the scores they give, and also whether or not their education level 

affects the amount of dispersion in the scores they give.

An ANOVA (Analysis of Variance) will be used to examine this question.  The analysis will 
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utilize a “between subjects” design, as judges are naturally grouped according to their 

education level.  Where the data do not meet the assumptions of an ANOVA, the 

nonparametric Kruskal-Wallis test will be used.  All available judges from each year will be 

used.

Students of different ages.  This question may seem straightforward at first: whether 

younger students tend to get higher scores, for instance, appears to be a simple tally.  Yet 

that tally, though easy to perceive and calculate, may not give an answer as enlightening as 

an analysis that takes into account groupings within the data.  For example, what if all 

students consistently received high scores in one particular school while other students in 

the same age group but in a different school received lower scores on average?  The one 

school of high scoring students may throw off the tally so as to misrepresent the score level 

of the majority of students in that age group.

An analysis carried out as such is termed a “disaggregated analysis” (Twisk, 2006) because 

it does not take into account the possible clustering, or aggregation, of the scores of 

students within schools.  In other words, it yields a “disaggregation bias” in the results.

On the other hand, consider that the effect of schools is taken into account, but this time no 

individual student scores are used – only an average of all scores from the same school.  In 

this case all information regarding the variation of scores within each school is lost, where a 

comparison of these might have been helpful.  This analysis is called “aggregated analysis” 

because the data is grouped, or aggregated, and may produce an “aggregation bias” (Twisk, 

2006) by not considering patterns of the data within groups (student scores within schools).

For this question, then, hierarchical linear modeling (HLM) will be useful because it will take 

into account the grouping of students within schools.  The independent variables of this 
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hierarchical model will be the school each student attends, and the student's division 

(elementary, junior high, or senior high), which will determine the student's age group.  The 

dependent variable is the student's average score.  The model will thus consist of two 

random levels: school and students' average scores.  The division in which the student is 

competing is a fixed factor at the student level.

The linear model used will be a “random intercepts” model.  This means that a separate 

regression line is essentially calculated for every school, each with its own intercept, and 

that the regression slopes are the same for every school.  While having parallel regression 

lines for every school assumes that Division affects the scores within all schools equally, this 

allows us to test for Division effects much more easily than would a model with both random 

intercepts and random slopes.

The model used for this question will be:

y
ij

= 0  
1
I Junior   

2
I Senior   uj  e

ij

where

yij = dependent variable (student's average score)

β0 = predicted mean for all scores at 'Elementary' division level

β1 = predicted mean offset (from Elementary mean) for all scores at 'Junior' division level

β2 = predicted mean offset (from Elementary mean) for all scores at 'Senior' division level

I(Junior) = indicator function: 1 if division is 'Junior' and 0 otherwise

I(Senior) = indicator function: 1 if division is 'Senior' and 0 otherwise

uj = contribution of school j

eij = contribution of student i within school j,

and where uj ~ N(0,variance between schools) and eij ~ N(0,variance within schools).
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Because Division is the only information available about student age, the question of 

whether the scores of younger versus older students differ will be addressed by testing to 

see if scores differ by level of Division.  This will involve comparing the values of the 

likelihood functions of two linear models, the simpler of which is said to be “nested” within 

the more complicated (Pinheiro & Bates, 2002).  For this case the more complicated model 

will be one in which Division is modeled, and nested within that will be the simpler model 

where Division is not taken into account.  The values of the likelihood functions of these two 

models, given the data, will be compared using a likelihood ratio test, which follows a chi-

square distribution with the same number of degrees of freedom as the number of additional 

parameters being estimated in the more complicated model.  If the result of the likelihood 

ratio test implies that the data is better fit using the more complicated model, we can infer 

that the influence of Division effects on scores is not negligible.

The nested model used for the likelihood ratio test will be:

y
ij

= 
00

 uj  e
ij

where

yij = dependent variable (student's average score)

γ00 = grand mean of all scores

uj = contribution of school j

eij = contribution of student i within school j,

and again where uj ~ N(0,variance between schools) and eij ~ N(0,variance within schools).

These parameters will be estimated using Restricted Maximum Likelihood procedures.  The 

model will then be refitted using full Maximum Likelihood procedures in preparation for the 

likelihood ratio test.  Although full Maximum Likelihood computations are required for the 

likelihood ratio test, Restricted Maximum Likelihood estimates will be reported, as full 
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Maximum Likelihood calculations tend to underestimate parameters much of the time 

(Pinheiro and Bates, 2002).

Because hierarchical linear modeling is like a more generalized and flexible implementation 

of Ordinary Least Squares (OLS) regression, it allows questions to be asked of the data at 

different levels (http://www.cmm.bris.ac.uk/lemma/).  In addition to reporting on whether 

Division is significant for each year of science fair data, this paper will also seek to answer 

whether or not School as a random effect is significant; in other words, whether the 

grouping of students within schools accounts for a significant amount of the variance in the 

model.  This will also be accomplished using a likelihood ratio test, but interestingly enough 

one that does not require that the models be fit using full Maximum Likelihood; the models 

fit using Restricted Maximum Likelihood will be used.  The test will involve comparing the 

likelihood values of the original model versus one that does not include the random effect uj.

Deviations of individual judges.  The author will attempt to find attributes common to 

judges who score higher on average, and those who score lower on average, than the mean 

scores of the projects they judge.  First, the average score for every project will be 

calculated.  This will enable a comparison between every judge's score for each project he or 

she judges against the average score awarded to that project.  Once those deviations are 

recorded, the mean deviation of each judge from the average score given to each project 

judged is calculated.

The analysis will take an interesting turn at this point: no statistical test is really associated 

with the finding of patterns such as these, yet this loose kind of exploration of the data 

allows the author a certain freedom to gauge perhaps a larger picture of judging trends than 

even a series of statistical tests might.

http://www.cmm.bris.ac.uk/lemma/
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Software.  For the analyses, all four years of data will be exported from SQLite databases 

and imported into an R workspace.  Data will be aggregated into mean scores and standard 

deviations of scores, and descriptive statistics about these data will be obtained by again 

aggregating the aggregated data in a similar manner.  The functions used for t-tests, 

Wilcoxon Signed Rank tests, ANOVAs and Kruskal-Wallis tests are included with the base 

installation of R.  The “lme4” package, by Douglas Bates and Martin Maechler (2010), will be 

used for hierarchical linear modeling.  The “languageR” package (Baayen, 2009) will be 

utilized for further examination of confidence intervals, and the “RLRsim” package by Fabian 

Scheipl (2010) will be used to test random effects.

Correlation across years.  A large number of students, teachers and parents overlap in 

their involvement in the science fair from year to year.  Because of this, answering a 

question using a single analysis across all four years of data combined would be 

inappropriate.  Each of the three questions will be addressed four times – once for every 

year of data.

Data limitations.  A more ideal situation of course would be the case in which enough data 

exists to analyze all three questions using hierarchical linear modeling.  The question about 

judges scoring in their own area of expertise would be a prime target for hierarchical 

modeling if all levels of data for every judge were to exist, and if enough students were 

scored by every judge.  Demographic information about students such as teacher and school 

could be considered in a hierarchical model because there would be enough students scored 

by each judge.  Similarly for the question about the education level of the judges: if enough 

students were scored by each judge, perhaps demographic information could be modeled 

using a hierarchical linear model.
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R e s u l t s

Area of Expertise Data

Descriptive statistics.  The following table gives basic descriptive statistics for the Area of 

Expertise data where both sets of scores (in and out of areas of expertise) for every judge 

were averaged.

Year N Means of Means StDevs of Means

2006 in :
out :

51
51

in :
out :

78.58822
79.50857

in :
out :

7.531225
8.506835

2007 in :
out :

45
45

in :
out :

77.43719
78.59902

in :
out :

8.612623
7.664810

2008 in :
out :

52
52

in :
out :

78.11692
79.13322

in :
out :

9.826044
9.780263

2009 in :
out :

53
53

in :
out :

77.65586
79.05400

in :
out :

7.626987
7.161549

In the table below, the standard deviation of all scores in a 'set' is considered.  In other 

words, the descriptive statistics are for standard deviations instead of score means.  Notice 

that the standard deviations in the table above are different from the mean standard 

deviations in the table below.  The standard deviations reported in the table above are 

calculated across the scores of all judges for each group, whereas the means below are 

calculated using the standard deviations from individual judges.  (The standard deviation of 

all scores is not the same as the average of standard deviations from smaller subgroups of 

those scores.)
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Year N Means of StDevs StDevs of StDevs

2006 in :
out :

51
51

in :
out :

10.957730
9.524107

in :
out :

5.803114
5.176137

2007 in :
out :

45
45

in :
out :

11.57460
11.35842

in :
out :

5.088999
5.973106

2008 in :
out :

52
52

in :
out :

10.41314
10.19923

in :
out :

4.806166
5.372600

2009 in :
out :

53
53

in :
out :

11.39699
10.53893

in :
out :

4.484539
5.706041

Determining the appropriate statistical tests.  The Area of Expertise data was tested to 

see which years passed the assumption of normality using the Shapiro-Wilk test, and the 

homogeneity of variance assumption using the Fligner-Killeen test.  This was done for the 

data where the means of every judge and area-of-expertise combination are considered as 

data points, and also for the data where the standard deviations are considered as data 

points.  The null hypothesis for the Shapiro-Wilk test is that the data is Normal, and the null 

hypothesis for the Fligner-Killeen test is that the variances are homogeneous.  The test 

values, degrees of freedom (denoted “dof”) and p-values for these tests are shown in the 

tables below for every year, and the results of the Shapiro-Wilk tests are shown for both 

types of judging (in and out of areas of expertise).

Pre-Tests on Data using Means as Data Points

Shapiro-Wilk Test Fligner-Killeen Test

Year N Test p-value Test dof p-value

2006 in :
out :

51
51

W=.9577
W=.989

.06689

.9157 Χ2=.5329 1 .4654

2007 in :
out :

45
45

W=.9722
W=.9604

.3471

.1262 Χ2=1.2879 1 .2564

2008 in :
out :

52
52

W=.9226
W=.9522

.002347

.03615 Χ2=.0783 1 .7797

2009 in :
out :

53
53

W=.9531
W=.9635

.03666

.1048 Χ2=.218 1 .6406
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Pre-Tests on Data using Standard Deviations as Data Points

Shapiro-Wilk Test Fligner-Killeen Test

Year N Test p-value Test dof p-value

2006 in :
out :

51
51

W=.9453
W=.9288

.02013

.004496 Χ2=.0053 1 .9417

2007 in :
out :

45
45

W=.957
W=.9541

.09353

.07284 Χ2=.911 1 .3398

2008 in :
out :

52
52

W=.9639
W=.9299

.1160

.004461 Χ2=.0588 1 .8085

2009 in :
out :

53
53

W=.9596
W=.9187

.07057

.001497 Χ2=1.742 1 .1869

Using alpha = .05, the only data that appears to be fit for t-tests would be the 2006 means, 

2007 means, and 2007 standard deviations.

Test results.  Using the null hypothesis that there is no difference between judges' mean 

scores when judging in versus judging out of their areas of expertise, test values, degrees of 

freedom and p-values for the previously determined appropriate tests are shown below.

Tests on Data using Means as Data Points

Year Test Used Test dof p-value

2006 paired t-test t=.8119 50 .4207

2007 paired t-test t=.8734 44 .3872

2008 Wilcoxon Signed Rank V=756 NA .3859

2009 Wilcoxon Signed Rank V=852.5 NA .2269

Assuming t-tests are considerably robust when it comes to violations of normality, t-tests for 

2008 and 2009 are shown as well.
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Tests on Data using Means as Data Points

Year Test Used Test dof p-value

2008 paired t-test t=.9373 51 .353

2009 paired t-test t=1.4721 52 .1470

Using the null hypothesis this time that there is no difference between the standard 

deviations of judges' scores when judging in versus judging out of their areas of expertise, 

results from the appropriate tests are shown below.

Tests on Data using Standard Deviations as Data Points

Year Test Used Test dof p-value

2006 Wilcoxon Signed Rank V=527 NA .2040

2007 paired t-test t=-.1977 44 .8442

2008 Wilcoxon Signed Rank V=630 NA .5942

2009 Wilcoxon Signed Rank V=538 NA .1171

Again, t-tests are also carried out on the data subsets where Wilcoxon Signed Rank tests 

were initially used.

Tests on Data using Standard Deviations as Data Points

Year Test Used Test dof p-value

2006 paired t-test t=-1.444 50 .1549

2008 paired t-test t=-.2696 51 .7885

2009 paired t-test t=-1.185 52 .2416

With alpha = .05, there is no conclusive evidence in the data that judges judge differently – 

either on average or in the variation of scores they give – when they judge in or out of their 
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own areas of expertise.  This is consistent for all parametric and non-parametric tests. 

There is, however, possibility of cumulative Type I error due to the fact that more than one 

statistical test has been performed on the same data.
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Education Level Data

Descriptive statistics.  The following table gives descriptive statistics for the Education 

level data, where all the scores for every judge were averaged.

Year Total N N Means of Means StDevs of Means

2006 111
55
23
33

Bachelor's :
Master's :

Ph.D. :

79.4205
77.6337
80.0114

Bachelor's :
Master's :

Ph.D. :

7.3563
6.1930
6.6694

2007 124
56
26
42

Bachelor's :
Master's :

Ph.D. :

78.6601
79.6074
77.5576

Bachelor's :
Master's :

Ph.D. :

6.8352
6.8593
8.0009

2008 119
43
30
46

Bachelor's :
Master's :

Ph.D. :

78.5923
78.1912
76.8794

Bachelor's :
Master's :

Ph.D. :

7.2250
8.7384
8.2208

2009 142
65
34
43

Bachelor's :
Master's :

Ph.D. :

79.7130
77.6257
79.3693

Bachelor's :
Master's :

Ph.D. :

7.7768
6.9616
9.9032

The table below, similar to that of the second Area of Expertise descriptive table, describes 

the Education level data where the standard deviation of a judge's scores is considered the 

data point for that judge.  As with the Area of Expertise data, note that the standard 

deviations in the table above are different from the mean standard deviations in the table 

below.
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Year Total N N Means of StDevs StDevs of StDevs

2006 111
55
23
33

Bachelor's :
Master's :

Ph.D. :

10.3148
11.8373
11.3874

Bachelor's :
Master's :

Ph.D. :

4.4198
3.7223
4.6893

2007 124
56
26
42

Bachelor's :
Master's :

Ph.D. :

10.9424
11.7155
11.8112

Bachelor's :
Master's :

Ph.D. :

3.9599
3.6169
5.3516

2008 119
43
30
46

Bachelor's :
Master's :

Ph.D. :

10.9671
11.6891
11.0682

Bachelor's :
Master's :

Ph.D. :

3.9897
3.9939
4.7969

2009 142
65
34
43

Bachelor's :
Master's :

Ph.D. :

10.8768
11.4978
9.9243

Bachelor's :
Master's :

Ph.D. :

4.7960
4.0236
4.3643

Determining the appropriate statistical tests.  The Education Level data was also tested 

to see which years pass the normality and homogeneity of variance assumptions, again using 

the Shapiro-Wilk and Fligner-Killeen tests, respectively.  And as before, these pre-tests were 

performed on both instances of the processed data: once where each judge's scores were 

aggregated into means, and once more where each judge's scores were aggregated to the 

standard deviation.

Pre-Tests on Data using Means as Data Points

Shapiro-Wilk Test Fligner-Killeen Test

Year Total N N Test p-value Test dof p-value

2006 111
55
23
33

Bachelor's :
Master's :

Ph.D. :

W=.9724
W=.9574
W=.9743

.2364

.4121

.6065
Χ2=1.269 2 .5302

2007 124
56
26
42

Bachelor's :
Master's :

Ph.D. :

W=.9837
W=.9689
W=.9756

.6486

.596

.4974
Χ2=.9159 2 .6326

2008 119
43
30
46

Bachelor's :
Master's :

Ph.D. :

W=.9844
W=.9259
W=.9822

.8172

.0383

.6974
Χ2=1.2603 2 .5325

2009 142
65
34
43

Bachelor's :
Master's :

Ph.D. :

W=.9776
W=.9674
W=.9572

.2847

.3947

.1098
Χ2=4.9569 2 .0839
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Pre-Tests on Data using Standard Deviations as Data Points

Shapiro-Wilk Test Fligner-Killeen Test

Year Total N N Test p-value Test dof p-value

2006 111
55
23
33

Bachelor's :
Master's :

Ph.D. :

W=.9182
W=.9357
W=.9379

.0011

.1454

.0589
Χ2=1.1554 2 .5612

2007 124
56
26
42

Bachelor's :
Master's :

Ph.D. :

W=.9757
W=.9780
W=.9496

.3161

.8299

.0623
Χ2=1.3773 2 .5023

2008 119
43
30
46

Bachelor's :
Master's :

Ph.D. :

W=.9621
W=.9806
W=.9596

.1654

.8416

.1104
Χ2=.5428 2 .7623

2009 142
65
34
43

Bachelor's :
Master's :

Ph.D. :

W=.9148
W=.9747
W=.9588

.0003

.6005

.1253
Χ2=.1029 2 .9498

Using alpha = .05, the only data for which Analysis of Variance would not be appropriate 

would be the 2006 standard deviations, 2008 means, and 2009 standard deviations.

It is interesting to note how most of the data, even the standard deviations, is normally 

distributed.  One might understandably expect the means to be normally distributed because 

the Central Limit Theorem may lead to such an intuition – even though these means are not 

sampled from the same theoretical distribution.  But that most of the standard deviations 

are normally distributed is a pleasant surprise from an analytical perspective.

Test results.  Examining the Education Level data with the null hypothesis that a judge's 

education level does not affect the mean score given by that judge, results for the previously 

determined appropriate tests are given below.
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Tests on Data using Means as Data Points

Year Test Used Test dof p-value

2006 between-subjects ANOVA F=.8403 2 .4344

2007 between-subjects ANOVA F=.6704 2 .5134

2008 Kruskal-Wallis Χ2=1.377 2 .5023

2009 between-subjects ANOVA F=.7352 2 .4813

As before, the parametric test is also carried out on the subset of data on which the non-

parametric test was initially used, using the same level of significance (alpha = .05).

Tests on Data using Means as Data Points

Year Test Used Test dof p-value

2008 between-subjects ANOVA F=.5488 2 .5792

Now, examining the Education Level data with the null hypothesis that a judge's education 

level does not affect the dispersion of scores given by that judge, test values, degrees of 

freedom and p-values are shown below for the appropriate tests.

Tests on Data using Standard Deviations as Data Points

Year Test Used Test dof p-value

2006 Kruskal-Wallis Χ2=3.978 2 .1368

2007 between-subjects ANOVA F=.5482 2 .5794

2008 between-subjects ANOVA F=.2755 2 .7597

2009 Kruskal-Wallis Χ2=3.0296 2 .2199

The parametric tests are again carried out on the subsets of data that did not strictly pass 

the tests of normality at alpha=.05.
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Tests on Data using Standard Deviations as Data Points

Year Test Used Test dof p-value

2006 between-subjects ANOVA F=1.22 2 .2993

2009 between-subjects ANOVA F=1.222 2 .2977

At alpha = .05, the data contains no conclusive evidence that a judge's education level has 

any effect on the mean score or dispersion of scores given by that judge.  The parametric 

and non-parametric tests agree, although the author must again point out the possibility of 

accumulating Type I error.
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Age Data

Descriptive statistics.  It may be meaningful to give descriptive statistics for schools, as 

students are grouped within schools at level 2 of the model.  Because of the number of 

schools involved in each year of the fair, these statistics are given in the appendix.

Parameter estimates.  For reference, the linear mixed model used for this question is 

repeated below.

y
ij

= 0  
1
I Junior   

2
I Senior   uj  e

ij

Estimates for these parameters, calculated using Restricted Maximum Likelihood procedures, 

are as follows.

2006
Estimate

2007
Estimate

2008
Estimate

2009
Estimate

Total # of students 183 233 217 260

Elementary mean β0 79.24 81.18 80.40 80.31

Junior offset from Elementary mean β1 -1.47 -4.61 -6.19 -3.25

Senior offset from Elementary mean β2 -3.60 -4.74 -5.91 -2.69

school variance uj ~N(0, 34.71) ~N(0, 41.97) ~N(0, 45.63) ~N(0, 35.36)

student (residual) variance eij ~N(0, 51.00) ~N(0, 63.39) ~N(0, 59.81) ~N(0, 60.62)

Tests for Division (fixed) effects.  The null hypothesis for this question is that age 

(modeled using Division) has no effect on student scores.  As mentioned earlier, the 

likelihood ratio test for fixed effects requires that the two models in comparison be fitted 

using full Maximum Likelihood computations.  Chi-square values, degrees of freedom and p-
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values obtained from the likelihood ratio test after refitting the original models and fitting 

the nested models are as follows.

Likelihood Ratio Test for Fixed Effects (Division)

Year Test dof p-value

2006 Χ2=2.0702 2 .3552

2007 Χ2=4.2024 2 .1223

2008 Χ2=10.867 2 .0044

2009 Χ2=3.3416 2 .1881

The results show no evidence for significant Division effects for 2006, 2007 or 2009 – but 

they do for 2008 at alpha=.05, and even at alpha=.01.

A further look at Division effects.  Another way to look at Division as a factor – one that 

might be more intuitive – comes from Bayesian statistics, and involves examining the 95% 

confidence intervals of the predicted means for Elementary, Junior High, and Senior High 

Division levels.  These means and confidence intervals are obtained using a method called 

“Gibbs sampling” which samples from the posterior distribution of the parameters in the 

model.  Gibbs sampling, a special case of “Markov chain Monte Carlo sampling,” simulates 

random samples from the probability distributions of the parameters in order to estimate the 

parameters themselves.  It holds some of the parameters in the model fixed while sampling 

others, and after multiple iterations begins to converge on estimates for all the parameters 

in the model and their 95% confidence intervals (Bates, 2006).

Below are the Bayesian estimates for the Division means and their 95% confidence intervals 

after running 100,000 iterations of this technique for each year of data.  The Empirical 

Means are computed from the actual data, the Traditional Estimates are predicted from the 
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regression lines, and the Bayesian Estimates are those obtained using Gibbs sampling. 

Notice that the Bayesian parameter estimates differ slightly from the traditionally computed 

estimates due to random sampling error.

2006 Means

Division N Empirical
Mean

Traditional
Estimate

Bayesian
Estimate

95% CI
Lower Limit

95% CI
Upper Limit

Elementary 55 79.86 79.236 79.804 77.236 82.3484

Junior 72 79.74169 77.766 78.740 72.556 84.8038

Senior 56 77.20694 75.636 76.641 70.212 83.1297

2007 Means

Division N Empirical
Mean

Traditional
Estimate

Bayesian
Estimate

95% CI
Lower Limit

95% CI
Upper Limit

Elementary 66 81.63 81.183 81.646 78.887 84.398

Junior 106 76.60154 76.571 76.219 69.701 82.7468

Senior 61 78.12828 76.440 77.174 70.047 84.2668

2008 Means

Division N Empirical
Mean

Traditional
Estimate

Bayesian
Estimate

95% CI
Lower Limit

95% CI
Upper Limit

Elementary 77 79.61 80.398 80.116 77.782 82.5266

Junior 86 76.46658 74.213 75.399 69.68 81.2561

Senior 54 78.60403 74.483 76.499 69.589 82.1106

2009 Means

Division N Empirical
Mean

Traditional
Estimate

Bayesian
Estimate

95% CI
Lower Limit

95% CI
Upper Limit

Elementary 113 79.27 80.306 79.6992 77.744 81.6053

Junior 92 78.17173 77.054 77.6156 72.627 82.5749

Senior 55 81.27160 77.612 79.6147 73.683 85.4403
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Examination of the confidence intervals for 2006 and 2009 indicate a lack of sufficient 

evidence to reject the null hypothesis that Division has no effect on the average score for 

each student; for both years, confidence intervals for all three division levels contain each 

other's midpoints.

For 2007 and 2008 however, this is not the case.  In the 2007 data, the midpoints for the 

Junior and Senior confidence intervals are respectively 76.22 and 77.16 – neither of which 

are contained in the Elementary division's confidence interval.  In the data for 2008, the 

Junior and Senior midpoints are 75.47 and 75.85, which also are not contained in the 

confidence interval for the Elementary division of that year.

So as confidence intervals overlap for 2007's and 2008's divisions, yet do not all contain 

each other's centers, a numerical test for significant differences is desirable for clarity.  Such 

a test is brought to light by Wolfe and Hanley (2002), where the distance between 

confidence interval midpoints is compared to functions of the standard errors (half the length 

and divided by 1.96) of the confidence intervals.

2 SEA

2
SEB

2 
1
2  midpointB−midpointA  2SEA2SEB

These are the calculated values used in the logical tests for 2007:

Elementary vs Junior 7.23  <?  5.42  <?  9.47

Elementary vs Senior 7.78  <?  4.49  <?  10.07

Junior vs Senior 9.85  <?  .933  <?  13.91

and for 2008:
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Elementary vs Junior 6.38  <?  4.69  <?  8.33

Elementary vs Senior 6.83  <?  4.30  <?  8.81

Junior vs Senior 8.70  <?  .38  <?  12.29

Because the test does not hold for either year, the claim cannot be made that Bayesian 

confidence intervals show evidence for significant differences.

Proportion of variance due to school grouping.  The “Inter-class Correlation” is an 

estimate of the total proportion of variance in the model that can be attributed to school 

grouping:

ICC =




2

u




2

u 



2

e

This gives researchers an excellent feel for how much a random factor impacts the outcome 

variable – or at least how much it impacts the overall variance of the outcome variable.  The 

Inter-class Correlations are easily computed, as the required variance estimates were 

reported earlier in this paper.

Inter-class Correlations

2006 2007 2008 2009

.405 .398 .433 .368

All years of data report that approximately 40% of the total variance in the model is 

attributed to the variance between schools.  This appears to be a very large portion of the 
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total variance, and a test for the significance of it will be helpful.

Tests for School (random) effects.  Testing for significance of random effects, or the 

effect of schools, is available using the RLRsim (“Exact (Restricted) Likelihood Ratio tests for 

mixed and additive models”) package for R.  Because the likelihood ratio test statistic itself 

follows a distribution, the RLRsim package samples from the likelihood ratio's “exact finite 

sampling distribution” to obtain an observed value (Scheipl, 2010).  This observed value is 

then compared with a chi-square distribution to calculate a p-value.

The null hypothesis for this test is that the variance attributed to the random component uj 

is equal to zero.  Restricted likelihood ratio test values and p-values are given below from a 

sample of 100,000 iterations of the process using RLRsim.

Random Effects p-values

Year Test p-value

2006 RLRT=19.41 1 · 10-5

2007 RLRT=46.23 2.2 · 10-16

2008 RLRT=36.38 2.2 · 10-16

2009 RLRT=30.89 2.2 · 10-16

The p-values indicate strong evidence for random effects, which agrees with the Inter-class 

Correlations' report that a large proportion of the variance in the model for each year is due 

to variance between schools.

Estimates of individual school contributions.  As the variance of uj has been estimated 

for each year, estimates of uj itself for every “j” (school) are displayed in a graph below. 

These are the estimated contributions, or adjustments, to the outcome score perpetuated by 
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each school.  95% confidence intervals are shown as well.
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2006
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2007
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2008
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2009
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Notice that the estimated values and confidence intervals for schools are ordered from those 

most positively affecting the outcome to those most negatively effecting the outcome, from 

top to bottom.  For every year, the highest 95% confidence interval does not overlap the 

lowest at all.  This agrees with the conclusion that the effect of schools is significant.
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Judge Deviation Data

Higher scoring judges.  First we consider judges who score higher, on average, than the 

average scores from other judges of the same projects.  The highest ten will be used from 

each year.

2006 Judges with Higher Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Previous
Judging

XP
Degree Field

119 17.07 19 No BS Chemical Engineering

88 13.91 --- No BS Zoology

32 11.90 9 Yes BS Engineering

79 11.49 10 No PhD Molecular Biology, Genetics

30 11.45 4 No PhD Chemistry, Biology, Medicine

59 10.39 8 Yes MS Engineering

43 9.97 11 Yes BS Civil Engineering

27 9.49 12 No PhD Pharmacology, Immunology

122 8.72 7 Yes BS Civil Engineering

69 8.39 40 No BS Mechanical Engineering

2007 Judges with Higher Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Degree Field

124 11.19 7 PhD Optics, Physics

122 10.33 7 BS Nuclear Engineering

85 9.91 1 MS Engineering, Physics, Chemistry

83 9.39 10 BS Microbiology, Zoology

102 9.31 6 PhD Engineering, Physics

134 9.19 24 MS Engineering, Physics

24 8.58 16 PhD Microbiology, Medicine

34 8.41 35 MS Microbiology, Medicine

28 8.25 12 PhD Computer Science, Mathematics

84 8.20 11 BS Structural Engineering
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2008 Judges with Higher Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Degree
Previous
Judging

XP
City Company Field

175 17.54 41 BS No SLC Williams Drafting

177 14.42 4 PhD No SLC U of U Finance, Physics

36 13.51 7 BS Yes SLC Myriad Genetics Zoology

155 12.35 0 PhD No --- U of U Chemical, Bioengineering

62 9.91 13 PhD Yes SLC U of U Physics

91 9.43 4 BS Yes Holladay U of U Engineering, Medicine

138 9.38 2 MS No Bountiful --- Behavioral Science

20 9.25 15 PhD Yes SLC U of U Biochemistry, Chemistry

74 9.14 6 BS Yes SLC Idaho Technology Molecular & Microbiology

96 9.08 4 MS No SLC U of U Behavioral Science

2009 Judges with Higher Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Degree
Previous
Judging

XP
City Company Field

117 16.65 7 PhD Yes SLC U of U Bioengineering

63 15.11 22 PhD Yes SLC --- Computers

49 14.32 0 MS No SLC --- Mechanical Engineering

108 14.00 8 MS Yes SLC Utah Governor's Office Atmospheric Science

62 12.31 10 MS Yes SLC U of U Physics, Engineering

57 12.28 25 MS Yes Bountiful Corps of Engineers Engineering

99 11.92 40 BS Yes SLC Williams Drafting

148 11.48 8 BS Yes SLC Myriad Genetics Zoology

237 10.13 >10 PhD Yes SLC Energy Solutions Environment

206 10.01 1 BS No SLC Salt Lake School District Neuroscience

The tables appear to show a trend with judges who are involved in engineering or biology. 

This may be partially due to the fact that many participating science fair judges are 

engineers or biologists, but there does seem to be a greater concentration in these tables 

nonetheless.  Other than that, though, there are no noticeable patterns in the level of 

education (which agrees with the statistical results), whether or not the judge has judged 
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previously, years of experience, or the nature of the company for whom the judge works.

Lower scoring judges.  Next we consider the judges who score lower, on average, than the 

average scores from other judges of the same projects.  The lowest ten will be used from 

each year.

2006 Judges with Lower Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Previous
Judging

XP
Degree Field

61 -14.57 6 No BS Computer Science

24 -12.83 9 Yes BS Civil Engineering

63 -11.88 1 No MS Mechanical Engineering

42 -11.03 21 No PhD Bioengineering, Chemistry

108 -9.92 20 Yes PhD Microbiology

106 -9.88 4 No MS Geology, Geophysics

11 -9.75 40 Yes BA Behavioral Science

78 -9.55 21 No BS Manufacturing Engineering

5 -9.41 4 Yes MS Meteorology

84 -8.68 0 No BS Meteorology, Earth Science

2007 Judges with Lower Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Degree Field

66 -17.42 1 PhD Biology, Chemistry, Pharmacology

144 -12.11 >10 PhD Computer Science

126 -11.94 2 BS Behavioral Science

13 -11.61 40 MS Physics, Environment, Medicine

204 -10.88 --- --- Chemistry

140 -9.99 3 BS Environment, Biology

132 -9.85 9 BS Mathematics

55 -9.26 17 PhD Biomedical Physics

31 -9.01 25 PhD Electrical Engineering, Mathematics

146 -8.99 --- PhD Biology
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2008 Judges with Lower Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Degree
Previous
Judging

XP
City Company Field

168 -21.68 5 PhD No SLC U of U Genetics

160 -18.56 14 MS Yes Tooele Department of Defense Microbiology

6 -13.00 29 BS Yes SLC U of U Computers, Physics

57 -12.60 12 PhD Yes SLC American Chemical Society Organic Chemistry

134 -10.81 16 PhD Yes SLC U of U Statistics, Genetics

174 -10.05 1 MS No Taylorsville Kleinfelder Meteorology

166 -10.02 2 MS Yes --- Kearns Jr. High Biology, Chemistry

67 -9.27 30 PhD Yes Dugway Dugway Proving Grounds Physics

128 -8.96 29 PhD Yes Clearfield Northrop Grumman Computers

3 -8.33 13 BS Yes SLC Colvin Engineering Engineering

2009 Judges with Lower Mean Deviations

Judge Mean
Deviation

Years
XP in
Field

Degree
Previous
Judging

XP
City Company Field

116 -20.89 6 PhD Yes SLC U of U Engineering

54 -17.97 34 BS Yes SLC Hercules ATK Chemical Engineering

21 -15.78 4 PhD Yes SLC U of U Biochemistry

26 -14.22 25 PhD Yes SLC U of U Computers

33 -13.89 30 PhD Yes SLC U of U Computers

114 -13.74 9 MS Yes Murray Nolte Associates Engineering

104 -13.00 38 BS Yes West Jordan Motorola Engineering

155 -11.71 --- MS Yes SLC Utah Business Accelerator Business

14 -11.56 4 MS Yes SLC L-3 Computers, Physics

82 -10.69 16 PhD Yes SLC U of U Molecular Biology

The same concentration of engineers and biologists emerges in these lower scoring tables as 

it did in the higher scoring tables.  In 2008 and 2009, though, almost all of the lowest 

scoring judges had previous judging experience – slightly more so than the highest scoring 

judges.  Again, there are not enough repeating companies listed to make any kind of 

inferences about the judges' places of work.
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Average deviations for more general categories of judges.  It may be interesting to 

look at the average of all judges' average deviations using a broader classification scheme. 

Recall that this is the original classification scheme which judges self-report:

behavioral science
biochemistry
botany
chemistry
computer science
earth science
engineering
environmental management
mathematics
medicine
microbiology
physics
space science
zoology

Here are the more general groups into which the author has grouped judges for the 

upcoming tables in order that more judges can be counted in each group:

behavioral science  (behavioral science)
chemistry & microbiology  (biochemistry, chemistry, microbiology)
earth science  (earth science, environmental management)
macro-biology  (botany, medicine, zoology)
mathematics  (computer science, engineering, mathematics, physics, space science)

Note that because most judges are self-reported into several categories, almost every judge 

is in more than one of the original categories, and thus many are even in more than one of 

these more general groups.  Thus, average deviation scores are correlated between groups – 

but this can be viewed as an accurate reflection of the way judges self-report.

When viewing judges with lower and higher average score deviations in the previous tables, 

the average deviation was calculated for every judge, and individual judges were examined. 

In the following tables, the judges' average deviation scores were averaged for every judge 

within each of the more general groups:
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2006 Group Mean Deviations

N (correlated) Group of Judges Mean of Mean Deviations

16 behavioral science -.193

50 chemistry & microbiology 1.055

53 earth science -1.564

47 macro-biology .336

120 mathematics -.132

2007 Group Mean Deviations

N (correlated) Group of Judges Mean of Mean Deviations

2 behavioral science -5.320

48 chemistry & microbiology 1.002

35 earth science -.586

38 macro-biology .881

103 mathematics .099

2008 Group Mean Deviations

N (correlated) Group of Judges Mean of Mean Deviations

7 behavioral science 3.378

50 chemistry & microbiology -.901

24 earth science -1.341

37 macro-biology 1.244

87 mathematics .163
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2009 Group Mean Deviations

N (correlated) Group of Judges Mean of Mean Deviations

22 behavioral science -.202

61 chemistry & microbiology -.165

39 earth science 2.406

54 macro-biology 1.662

99 mathematics -.389

Much disparity exists between the numbers of judges in each group for each year.  Still, for 

most groups the average of mean deviations is between -2 and 2.  There seems to be no 

pattern for any of the groups across any years, and there are no noticeably divergent results 

within any one year.  The exceptions, of course, are the groups with low numbers of judges, 

where measurements of the mean are expected to deviate more drastically.  The “macro-

biology” group (botany, medicine, and zoology) is the only group whose mean is always 

positive, but even those means are not substantially higher than others, nor are they very 

consistent.
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D i s c u s s i o n

Not finding evidence for judging bias is basically good.  If there is not enough statistical 

evidence to conclude judging bias exists for a particular question, we fail to reject the null 

hypothesis that “there is no bias.”  However, this does not ensure that there is no bias.  After 

all, failing to reject a null hypothesis is not the same as accepting that null hypothesis 

(Dallal, 2007).  In other words, if we do not possess evidence of judging bias, this does not 

necessarily mean that we do possess positive evidence that no bias exists.  So essentially, 

the best possible outcome for any of the study questions would be to conclude that there is a 

lack of evidence for judging bias.  To conclude otherwise would of course insinuate that 

scores given by judges are dependent on a factor that is unrelated to the quality of the 

science fair project.

With this in mind, most of the outcomes of this study were favorable.  None of the judges 

seemed to judge higher or lower based on their own education or area of expertise.  No 

distinct patterns could be discerned among judges who scored lower or higher than the 

averages for the projects they judged.  And where the students' age, or division, was the 

independent variable, bias was only shown positively for 2008.

So what does that mean – that judges were only giving scores as a function of age in 2008? 

Was there something that happened to influence judging dynamics that year, or was it 

simply Type I error?  The author did, after all, use more than one test of significance for 

division effects without adjusting for Type I error – in addition to the fact that the other test 

– namely, the Bayesian confidence intervals – did not show significance for 2008.

With so much of the variance in the linear model being accounted for by schools, it is natural 
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to wonder what the 'mechanism' or reason is for this variance.  The scores awarded to 

projects within schools may differ for several reasons, and it is difficult to decide if any of 

these reasons are accurate.  Some schools may have a systemized approach to preparing 

students for science fairs, and may be very good at it.  Some schools probably have superior 

methods for teaching science and technology.  The students in some schools may have 

better support systems in their lives due to better socioeconomic status or family situations. 

From another angle, judges can have bias toward or against schools.  For example, in 2006 

“Beehive Science & Tech” was ironically at the bottom of the list of the model's school 

contributions.  Could it be that judges expected more because of the name of the school and 

judged more harshly?  Again, the accuracy of any of these ideas would be difficult to 

determine conclusively.

Possible study limitations.  For the judges who tended to score higher or lower than the 

average scores of the projects they judged, perhaps more solid conclusions could be drawn if 

more information about judges were available.  Deeper facts about a judge, such as age, 

quality of life, free time given to scientific endeavors, or family life might serve as better 

data for finding general patterns of higher or lower scoring.  Of course, the case could simply 

be that a judge's propensity for scoring higher or lower is not derived from anything chronic: 

judges, being people, have good days and bad days.  Personality differences could also come 

into play: one judge having a bad day might give way to an angry disposition while another 

judge having a bad day may feel softened toward the strangers around him who are not part 

of his personal problems.  Finally, it is also possible that deviations among scores are simply 

due to random error.  But whatever the reason for some judges' scoring higher or lower, a 

greater amount of information about the judges would give researchers a better chance at 

identifying what that reason is or what it is not.

Another limitation is on the part of the author: as just mentioned, Type I error was not 
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adjusted for, even though two tests were used to test for Division effects in the hierarchical 

model.

One question that may not be obvious at first is 'Are “areas of expertise” the same as “areas 

of interest?”'  While this was not addressed in the main body of this study, the author has 

reflected on whether equating these two concepts has been reasonable.

Finally, as the name of this paper is “Science Fair Fairness,” due diligence would require the 

admission that the statistical tests involved have not been comprehensive in their search for 

'fairness'.  Specifically, these tests measure systematic sources of bias: those that are 

identifiable and shift the mean of a group of scores in a consistent direction, for example. 

Random error is that which cannot be attributed to anything specific, such as the difference 

of scores from one judge to another on any given project, or the way one judge judges 

differently on one day than another day.  Random error would not affect the mean of a group 

of scores in the same direction each time the same population is sampled.  In other words, if 

random error were the only source of error, the sample mean would literally oscillate 

'randomly' about the population mean.  If this were the case with the Salt Lake Valley 

Science and Engineering Fair, this study would never find statistical bias in any of the 

statistical tests that have been used in this paper – but scores would always be affected by 

the random measurement error that is part of subjective judgment.

That having been said, a generalizability study would be an interesting new direction for this 

backdrop.  One could aim to discover the optimal number of judges to assign to a single 

student project, for example.
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A p p e n d i x

Descriptive Statistics for Age Data

Below are the mean scores given to every school for each year – that is, the mean of all 

scores given to all student projects within each school.  Where “NA” is reported in the 

Standard Deviation column, there was only one student competing from that school for that 

year.

2006

School Mean Score Standard Deviation

AMES 78.75 8.52

Beehive Science & Tech 60.64 0.66

Bennion Elementary 80 NA

Bonneville Elementary 84.25 4.6

Bryant Intermediate 77.71 7.11

Churchill Jr. High 84.52 6.9

City Academy 73.75 6.55

Copper Hills 70.75 NA

Cottonwood Elementary 85.3 8.44

Eastwood Elementary 92.32 3.08

Eisenhower Jr. High 77.2 NA

Ensign Elementary 79.12 9.81

Escalante Elementary 78.28 3.85

Franklin Elementary 51.67 NA

GHS 50.67 NA

Glendale Middle 83.75 NA

Grantsville High 74.29 6.01

Hawthorne Elementary 80.4 NA

Highland Park Elementary 70.5 NA

Hillside Elementary 87.78 NA

Hillside Middle School 82.74 4.95

Indian Hills Elementary 83 5.28

J. E. Cosgriff 84.74 3.72

Jackson 64.2 NA

Kearn's St. Anns 77.7 9.64

Kearns Jr. High 83 NA
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2006

School Mean Score Standard Deviation

Liberty Elementary 73.6 5.6

Meadowlark Elementary 74.43 6.74

Morningside Elementary 84.49 3.9

North Star Elementary 70.67 NA

Northwest Middle School 76 NA

Oakridge Elementary 86.6 4.23

Olympus Jr High 69.5 1.41

Olympus Jr. High 79.41 9.4

Parkview Elementary 74.9 NA

Reid School 83.78 4.68

Scott M. Matheson Jr. High 88.75 6.25

St. Frances Xavier 80.7 0.99

Tooele High School 68.21 4.89

Tooele Jr. High 75.46 9.6

UINTAH 75.57 NA

Upland Terrace Elementary 83.17 NA

Wasatch Junior High 83.89 6.31

West High School 77.51 8.86

West Lake Jr. High 75.84 6.2

West Valley Elementary 81.57 NA

Westlake Junior High 61.6 NA

Whittier Elementary 83.4 8.49

2007

School Mean Score Standard Deviation

AMES 79.02 7.36

Backman 85 NA

Beacon Heights 83.69 4.33

Beehive Science & Tech 71.72 9.74

Bonneville 81 NA

Bryant 66.17 10.33

Carl Sandburg 83.25 NA

City Academy 80.72 2.87

Clark N. Johnsen Jr. High 62.24 11.28

Clayton 69.19 9.71

Copper Canyon 73.75 3.25

Cottonwood 88.05 4.16

Dilworth 81.53 2.83
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2007

School Mean Score Standard Deviation

East High 66.38 17.5

Eastwood 81.08 0.95

Entheos Academy Charter 74.61 11.1

Escalante 67.25 NA

Fox Hills 86.33 14.38

Gerald Wright 72.33 NA

Glendale 51.25 NA

Hawthorne 90.3 3.25

Highland Park 83.33 NA

Hillside 84.34 5.24

Homeschool Mentor Group 63.08 9.78

Hunter High School 83.17 NA

Hunter Jr. High 84 0.71

Indian Hills 90.52 5.28

J. E. Cosgriff 85.5 4.28

Jackson 74.75 NA

Kearns Jr. High 83.8 NA

Kearns St. Ann 77.96 9.64

Liberty 72.95 12.33

Matheson Jr. High 75.25 3.47

Morningside 90.75 7.17

Northwest 72.63 5.91

Oakridge 90.97 2.08

Oakwood 88 NA

Olympus High School 88.63 NA

Olympus Jr. High 85.13 4.65

Our Lady Of Lourdes Catholic 82.17 NA

Parkview 75 NA

Pioneer 80 NA

Pleasant Green 86.8 NA

Saint Francis Xavier 79.33 NA

Skyline High 92.86 NA

Spring Lane 69.4 NA

Tooele High 59.55 12.56

Tooele Jr. High 68.88 5.13

Uintah 81.51 11.68

Wasatch 69 NA

Wasatch Jr. High 86.01 5.06

West High 76.98 8.52

West Lake Jr. High 79.42 2.24
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2007

School Mean Score Standard Deviation

Whittier 86.3 4.57

2008

School Mean Score Standard Deviation

AMES 82.99 8.63

Academy Park Elementary 77 NA

Beehive Science & Tech 72.55 6

Bonneville Elementary 84.4 NA

Bryant Middle 81.2 NA

Churchill Jr. High 84.25 3.68

Clark Johnson Jr. High 70.88 NA

Copper Canyon Elementary 78.5 NA

Copper Hills Elementary 81 NA

Cottonwood Elementary 82 NA

Dilworth Elementary 73.39 12.01

East Elementary 89 NA

Eastwood Elementary 93 NA

Ensign Elementary 79.57 4.05

Entheos Expeditionary Learning 76.68 9.7

Escalante Elementary 69.5 NA

Fox Hills Elementary 71.5 NA

Gerald Wright Elementary 86.8 NA

Glendale Middle School 71.75 2.24

Granite Technical Institute 60.4 NA

Grantsville Jr. High 67.26 6.35

Hawthorne Elementary 89.63 1.94

Hillside Middle School 81.6 6.9

Hunter Elementary 85 NA

Indian Hills Elementary 80.98 3.41

J.E. Cosgriff Memorial 85.27 7.12

Jeremy Ranch Elementary 83.1 3.39

Juan Diego Catholic High 62.75 NA

Kearns - St. Ann 70.09 7.03

Liberty Elementary 69.07 6.81

Matheson Jr. High 69.44 1.5

Meadowlark Elementary 82.93 10.85

Middle Canyon Elementary 89.25 NA

Mill Creek Elementary 89 NA
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2008

School Mean Score Standard Deviation

Monticello Academy 78.51 7.6

Morningside Elementary 90.27 9.48

Nibley Park Elementary 55 NA

Northlake Elementary 80.5 NA

Northwest Middle School 80.91 6.19

Oakridge Elementary 85.03 6.75

Oakwood Elementary 78.96 10.31

Olympus High 78.47 2.64

Olympus Jr. High 84.73 14.32

Open Classroom 73.32 13.02

Parkview Elementary 73.4 NA

Reid School 61.71 NA

Rose Park Elementary 62.88 10.78

Rosecrest Elementary 69.75 NA

Saint Sophia 93.25 NA

Salt Lake Jr. Academy 42.33 NA

Skyline High School 87.06 6.14

Smith Elementary 87.33 NA

Stansbury Park Elementary 67.6 NA

Tooele High School 70.64 9.65

Tooele Jr. High 74.41 5.72

Twin Peaks Elementary 80.67 NA

Wasatch Elementary 71.6 NA

Wasatch Jr. High 84.22 3.93

West High 78.68 9.57

Westlake Jr. High 61.91 7.55

Whittier Elementary 84.56 6.78

2009

School Mean Score Standard Deviation

Academy Park Elementary 90.67 NA

AMES 85.32 5.74

Beehive Academy 78.47 6.77

Blessed Sacrament 72.78 15.8

Bonneville Elementary 80.33 6.96

Churchill Junior High 85.19 8.65

City Academy 76.91 5.37

Clark Johnson Junior High 64.34 9.52
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2009

School Mean Score Standard Deviation

Copper Canyon Elementary 80.53 3.85

Cottonwood Elementary 84.8 2.55

Dugway Elementary 67.33 11.72

Dugway High School 79 NA

Dugway Jr. High 74.5 NA

East Elementary 79.16 11.72

Eastwood Elementary 78.75 13.79

Emerson Elementary 85 NA

Ensign Elementary 87.48 1.03

Entheos Academy 83.98 10.22

Escalante Elementary 78.07 4.41

Fox Hills Elementary 80.5 NA

Glendale Middle School 79.09 5.25

Grantsville Elementary 82 NA

Harris Elementary 95 NA

Hawthorne Elementary 92.67 2.63

Highland High 92.17 NA

Highland Park Elementary 79.78 1.45

Hillcrest Jr. High 71.23 4.1

Hillside Middle School 82.71 5.24

Howard R. Driggs Elementary 83.93 1.87

Hunter Elementary 92.75 NA

Indian Hills Elementary 75.05 0.78

J.E. Cosgriff Catholic Memorial 84.51 7.65

Jackson Elementary 81 NA

Jeremy Ranch Elementary 80.27 6.01

Juan Diego 70.6 NA

Kearns St. Ann 74.14 8.83

Liberty 72.48 11.7

Lincoln Elementary 67.63 12.2

Madeleine Choir School 89.36 0.51

Matheson Jr. High 72.97 3.9

McPolin Elementary 80.59 5.89

Meadowlark Elementary 93.4 NA

Middle Canyon Elementary 82.47 6.17

Monticello Academy 77.81 7.13

Nibley Park Elementary 75.25 7.19

North Star Elementary 67.5 NA

Northlake Elementary 81.25 NA

Northwest Middle School 70.63 5.93
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2009

School Mean Score Standard Deviation

Oakridge Elementary 86.13 4.77

Oakwood Elementary 86.23 2.11

Open Classroom 77.1 15.7

Reid School 75.33 8.39

Robert Frost Elementary 82.6 NA

Rose Springs Elementary 55 NA

Rosecrest Elementary 76.5 NA

Saint Francis Xavier 85.81 9.23

Saint Sophia 90.8 NA

SL Center for Science Ed. 73.73 9.72

Salt Lake Junior Academy 62 NA

Settlement Canyon Elementary 59.03 12.08

Skyline High School 94.44 0.39

St. John the Baptist 74.7 3.8

Stansbury Park Elementary 87.5 NA

The Colby School 85.56 6.92

Tooele High School 60.5 NA

Tooele Jr. High 78.08 6.41

Twin Peaks 80.05 2.05

Uintah Elementary 76.34 1.48

Utah Virtual Academy 67.5 20.51

Wasatch Jr. High 86.18 3.84

West High School 81.45 11.47

West Lake Jr. High 82.5 NA

Whittier Elementary 79.2 NA

Woodrow Wilson Elementary 70.4 NA
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Post hoc Power Calculations

All power calculations are performed using an alpha of .05, since all the statistical tests in 

this study were performed at that level of significance.  The software program “G*Power” is 

used to calculate effect sizes and power.  Because a succinct method for calculating the 

power of a Kruskal-Wallis test could not be found, the effect sizes and powers of these are 

estimated by calculating these values as if each statistical test had been an Analysis of 

Variance.

Area of Expertise Tests

Year Data Used Test Used Effect Size Power

2006 means t-test .1137 .1252

2007 means t-test .1302 .1369

2008 means Wilcoxon .1300 .1365

2009 means Wilcoxon .2022 .2678

2006 standard deviations Wilcoxon .2022 .2592

2007 standard deviations t-test -.0295 .0543

2008 standard deviations Wilcoxon -.0374 .0569

2009 standard deviations Wilcoxon -.1627 .1900

Education Level Tests

Year Data Used Test Used Effect Size Power

2006 means ANOVA .1248 .1953

2007 means ANOVA .1053 .1636

2008 means Kruskal-Wallis .0973 .1415

2009 means ANOVA .1028 .1755

2006 standard deviations Kruskal-Wallis .1503 .2677

2007 standard deviations ANOVA .0952 .1413

2008 standard deviations ANOVA .0689 .0938

2009 standard deviations Kruskal-Wallis .1326 .2681
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R Scripts

Data Import

Age2006 <- read.table("C:/home/project/4.R Data/Age2006.csv", header=TRUE, sep=",")
Age2007 <- read.table("C:/home/project/4.R Data/Age2007.csv", header=TRUE, sep=",")
Age2008 <- read.table("C:/home/project/4.R Data/Age2008.csv", header=TRUE, sep=",")
Age2009 <- read.table("C:/home/project/4.R Data/Age2009.csv", header=TRUE, sep=",")

AoE2006 <- read.table("C:/home/project/4.R Data/AoE2006.csv", header=TRUE, sep=",")
AoE2007 <- read.table("C:/home/project/4.R Data/AoE2007.csv", header=TRUE, sep=",")
AoE2008 <- read.table("C:/home/project/4.R Data/AoE2008.csv", header=TRUE, sep=",")
AoE2009 <- read.table("C:/home/project/4.R Data/AoE2009.csv", header=TRUE, sep=",")

Dev2006 <- read.table("C:/home/project/4.R Data/Dev2006.csv", header=TRUE, sep=",")
Dev2007 <- read.table("C:/home/project/4.R Data/Dev2007.csv", header=TRUE, sep=",")
Dev2008 <- read.table("C:/home/project/4.R Data/Dev2008.csv", header=TRUE, sep=",")
Dev2009 <- read.table("C:/home/project/4.R Data/Dev2009.csv", header=TRUE, sep=",")

Edu2006 <- read.table("C:/home/project/4.R Data/Edu2006.csv", header=TRUE, sep=",")
Edu2007 <- read.table("C:/home/project/4.R Data/Edu2007.csv", header=TRUE, sep=",")
Edu2008 <- read.table("C:/home/project/4.R Data/Edu2008.csv", header=TRUE, sep=",")
Edu2009 <- read.table("C:/home/project/4.R Data/Edu2009.csv", header=TRUE, sep=",")

Aggregation and other Preparation

# Age data - Take the mean of each student project
attach(Age2006)
m2006 <- aggregate(Age2006, by=list(school=School, project=Project, division=Division), mean)
detach(Age2006)
attach(Age2007)
m2007 <- aggregate(Age2007, by=list(school=School, project=Project, division=Division), mean)
detach(Age2007)
attach(Age2008)
m2008 <- aggregate(Age2008, by=list(school=School, project=Project, division=Division), mean)
detach(Age2008)
attach(Age2009)
m2009 <- aggregate(Age2009, by=list(school=School, project=Project, division=Division), mean)
detach(Age2009)

# Age data - Remove unneeded columns & cleanup objects
Age6m = subset(m2006, , select=c(project,school,division,Score))
Age7m = subset(m2007, , select=c(project,school,division,Score))
Age8m = subset(m2008, , select=c(project,school,division,Score))
Age9m = subset(m2009, , select=c(project,school,division,Score))
rm(m2006, m2007, m2008, m2009)

# AoE data - Get average & stdev of scores for each Judge & inAoE combination
m2006 <- aggregate(AoE2006, by=list(judge=AoE2006$Judge, IN=AoE2006$inAoE), mean)
s2006 <- aggregate(AoE2006, by=list(judge=AoE2006$Judge, IN=AoE2006$inAoE), sd)
m2007 <- aggregate(AoE2007, by=list(judge=AoE2007$Judge, IN=AoE2007$inAoE), mean)
s2007 <- aggregate(AoE2007, by=list(judge=AoE2007$Judge, IN=AoE2007$inAoE), sd)
m2008 <- aggregate(AoE2008, by=list(judge=AoE2008$Judge, IN=AoE2008$inAoE), mean)
s2008 <- aggregate(AoE2008, by=list(judge=AoE2008$Judge, IN=AoE2008$inAoE), sd)
m2009 <- aggregate(AoE2009, by=list(judge=AoE2009$Judge, IN=AoE2009$inAoE), mean)
s2009 <- aggregate(AoE2009, by=list(judge=AoE2009$Judge, IN=AoE2009$inAoE), sd)

# AoE data - Trim unneeded columns from aggregated dataframes & cleanup objects
AoE6m = subset(m2006, , select=c(judge,IN,score))
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AoE6s = subset(s2006, , select=c(judge,IN,score))
AoE7m = subset(m2007, , select=c(judge,IN,score))
AoE7s = subset(s2007, , select=c(judge,IN,score))
AoE8m = subset(m2008, , select=c(judge,IN,score))
AoE8s = subset(s2008, , select=c(judge,IN,score))
AoE9m = subset(m2009, , select=c(judge,IN,score))
AoE9s = subset(s2009, , select=c(judge,IN,score))
rm(m2006, s2006, m2007, s2007, m2008, s2008, m2009, s2009)

# Edu data - Get average & stdev of scores for each judge
m2006 <- aggregate(Edu2006, by=list(judge=Edu2006$Judge, degree=Edu2006$Degree), mean)
s2006 <- aggregate(Edu2006, by=list(judge=Edu2006$Judge, degree=Edu2006$Degree), sd)
m2007 <- aggregate(Edu2007, by=list(judge=Edu2007$Judge, degree=Edu2007$Degree), mean)
s2007 <- aggregate(Edu2007, by=list(judge=Edu2007$Judge, degree=Edu2007$Degree), sd)
m2008 <- aggregate(Edu2008, by=list(judge=Edu2008$Judge, degree=Edu2008$Degree), mean)
s2008 <- aggregate(Edu2008, by=list(judge=Edu2008$Judge, degree=Edu2008$Degree), sd)
m2009 <- aggregate(Edu2009, by=list(judge=Edu2009$Judge, degree=Edu2009$Degree), mean)
s2009 <- aggregate(Edu2009, by=list(judge=Edu2009$Judge, degree=Edu2009$Degree), sd)

# Edu data - Trim unneeded columns from aggregated dataframes & cleanup objects
Edu6m = subset(m2006, , select=c(judge,degree,Score))
Edu6s = subset(s2006, , select=c(judge,degree,Score))
Edu7m = subset(m2007, , select=c(judge,degree,Score))
Edu7s = subset(s2007, , select=c(judge,degree,Score))
Edu8m = subset(m2008, , select=c(judge,degree,Score))
Edu8s = subset(s2008, , select=c(judge,degree,Score))
Edu9m = subset(m2009, , select=c(judge,degree,Score))
Edu9s = subset(s2009, , select=c(judge,degree,Score))
rm(m2006, s2006, m2007, s2007, m2008, s2008, m2009, s2009)

# I can remove these original dataframes now too
rm(Age2006,Age2007,Age2008,Age2009)
rm(AoE2006,AoE2007,AoE2008,AoE2009)
rm(Edu2006,Edu2007,Edu2008,Edu2009)

Descriptive Statistics

## Age descriptives
aggregate(Age6m, by=list(School=Age6m$school), mean)
aggregate(Age6m, by=list(School=Age6m$school), sd)
aggregate(Age7m, by=list(School=Age7m$school), mean)
aggregate(Age7m, by=list(School=Age7m$school), sd)
aggregate(Age8m, by=list(School=Age8m$school), mean)
aggregate(Age8m, by=list(School=Age8m$school), sd)
aggregate(Age9m, by=list(School=Age9m$school), mean)
aggregate(Age9m, by=list(School=Age9m$school), sd)

## AoE descriptives
aggregate(AoE6m, by=list(within=AoE6m$IN), mean)
aggregate(AoE6m, by=list(within=AoE6m$IN), sd)
aggregate(AoE7m, by=list(within=AoE7m$IN), mean)
aggregate(AoE7m, by=list(within=AoE7m$IN), sd)
aggregate(AoE8m, by=list(within=AoE8m$IN), mean)
aggregate(AoE8m, by=list(within=AoE8m$IN), sd)
aggregate(AoE9m, by=list(within=AoE9m$IN), mean)
aggregate(AoE9m, by=list(within=AoE9m$IN), sd)
aggregate(AoE6s, by=list(within=AoE6s$IN), mean)
aggregate(AoE6s, by=list(within=AoE6s$IN), sd)
aggregate(AoE7s, by=list(within=AoE7s$IN), mean)
aggregate(AoE7s, by=list(within=AoE7s$IN), sd)
aggregate(AoE8s, by=list(within=AoE8s$IN), mean)
aggregate(AoE8s, by=list(within=AoE8s$IN), sd)
aggregate(AoE9s, by=list(within=AoE9s$IN), mean)
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aggregate(AoE9s, by=list(within=AoE9s$IN), sd)

## Edu descriptives
aggregate(Edu6m, by=list(Degree=Edu6m$degree), mean)
aggregate(Edu6m, by=list(Degree=Edu6m$degree), sd)
aggregate(Edu7m, by=list(Degree=Edu7m$degree), mean)
aggregate(Edu7m, by=list(Degree=Edu7m$degree), sd)
aggregate(Edu8m, by=list(Degree=Edu8m$degree), mean)
aggregate(Edu8m, by=list(Degree=Edu8m$degree), sd)
aggregate(Edu9m, by=list(Degree=Edu9m$degree), mean)
aggregate(Edu9m, by=list(Degree=Edu9m$degree), sd)
aggregate(Edu6s, by=list(Degree=Edu6s$degree), mean)
aggregate(Edu6s, by=list(Degree=Edu6s$degree), sd)
aggregate(Edu7s, by=list(Degree=Edu7s$degree), mean)
aggregate(Edu7s, by=list(Degree=Edu7s$degree), sd)
aggregate(Edu8s, by=list(Degree=Edu8s$degree), mean)
aggregate(Edu8s, by=list(Degree=Edu8s$degree), sd)
aggregate(Edu9s, by=list(Degree=Edu9s$degree), mean)
aggregate(Edu9s, by=list(Degree=Edu9s$degree), sd)

Area of Expertise Analysis

## Tests for normality (Shapiro-Wilk) & homogeneity of variance (Fligner-Killeen)
shapiro.test(as.vector( subset(AoE6m,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE6m,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE6m)
shapiro.test(as.vector( subset(AoE7m,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE7m,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE7m)
shapiro.test(as.vector( subset(AoE8m,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE8m,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE8m)
shapiro.test(as.vector( subset(AoE9m,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE9m,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE9m)
shapiro.test(as.vector( subset(AoE6s,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE6s,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE6s)
shapiro.test(as.vector( subset(AoE7s,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE7s,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE7s)
shapiro.test(as.vector( subset(AoE8s,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE8s,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE8s)
shapiro.test(as.vector( subset(AoE9s,IN==0,select=c(score))$score ))
shapiro.test(as.vector( subset(AoE9s,IN==1,select=c(score))$score ))
fligner.test(score~IN, data=AoE9s)
##            ok for t-test:  AoE6m AoE7m AoE7s
##     Wilcoxon Signed Rank:  AoE6s AoE8m AoE8s AoE9m AoE9s

## t-tests
t.test(subset(AoE6m,IN==0,select=c(score))$score,subset(AoE6m,IN==1,select=c(score))$score,paired=1)
t.test(subset(AoE7m,IN==0,select=c(score))$score,subset(AoE7m,IN==1,select=c(score))$score,paired=1)
t.test(subset(AoE7s,IN==0,select=c(score))$score,subset(AoE7s,IN==1,select=c(score))$score,paired=1)

## Wilcoxon Signed Rank (Matched Pairs) tests
wilcox.test(subset(AoE6s,IN==0,select=c(score))$score,subset(AoE6s,IN==1,select=c(score))
$score,paired=1)
wilcox.test(subset(AoE8m,IN==0,select=c(score))$score,subset(AoE8m,IN==1,select=c(score))
$score,paired=1)
wilcox.test(subset(AoE8s,IN==0,select=c(score))$score,subset(AoE8s,IN==1,select=c(score))
$score,paired=1)
wilcox.test(subset(AoE9m,IN==0,select=c(score))$score,subset(AoE9m,IN==1,select=c(score))
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$score,paired=1)
wilcox.test(subset(AoE9s,IN==0,select=c(score))$score,subset(AoE9s,IN==1,select=c(score))
$score,paired=1)

## Additional t-tests
t.test(subset(AoE6s,IN==0,select=c(score))$score,subset(AoE6s,IN==1,select=c(score))$score,paired=1)
t.test(subset(AoE8m,IN==0,select=c(score))$score,subset(AoE8m,IN==1,select=c(score))$score,paired=1)
t.test(subset(AoE8s,IN==0,select=c(score))$score,subset(AoE8s,IN==1,select=c(score))$score,paired=1)
t.test(subset(AoE9m,IN==0,select=c(score))$score,subset(AoE9m,IN==1,select=c(score))$score,paired=1)
t.test(subset(AoE9s,IN==0,select=c(score))$score,subset(AoE9s,IN==1,select=c(score))$score,paired=1)

Education Level Analysis

## Tests for normality (Shapiro-Wilk) & homogeneity of variance (Fligner-Killeen)
shapiro.test(as.vector( subset(Edu6m,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu6m,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu6m,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu6m)
shapiro.test(as.vector( subset(Edu7m,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu7m,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu7m,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu7m)
shapiro.test(as.vector( subset(Edu8m,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu8m,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu8m,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu8m)
shapiro.test(as.vector( subset(Edu9m,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu9m,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu9m,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu9m)
shapiro.test(as.vector( subset(Edu6s,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu6s,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu6s,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu6s)
shapiro.test(as.vector( subset(Edu7s,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu7s,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu7s,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu7s)
shapiro.test(as.vector( subset(Edu8s,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu8s,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu8s,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu8s)
shapiro.test(as.vector( subset(Edu9s,degree=="B",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu9s,degree=="MS",select=c(Score))$Score ))
shapiro.test(as.vector( subset(Edu9s,degree=="PhD",select=c(Score))$Score ))
fligner.test(Score~degree, data=Edu9s)
##                ok for ANOVA:  Edu6m Edu7m Edu7s Edu8s Edu9m
##  need to use Kruskal-Wallis:  Edu6s Edu8m Edu9s

## ANOVAs
summary(aov(Score ~ degree, data=Edu6m))
summary(aov(Score ~ degree, data=Edu7m))
summary(aov(Score ~ degree, data=Edu7s))
summary(aov(Score ~ degree, data=Edu8s))
summary(aov(Score ~ degree, data=Edu9m))

## Kruskal-Wallis tests
kruskal.test(Edu6s$Score~Edu6s$degree)
kruskal.test(Edu8m$Score~Edu8m$degree)
kruskal.test(Edu9s$Score~Edu9s$degree)

## Additional ANOVAs
summary(aov(Score ~ degree, data=Edu6s))
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summary(aov(Score ~ degree, data=Edu8m))
summary(aov(Score ~ degree, data=Edu9s))

Age Analysis

library(lme4)
library(languageR)
library(RLRsim)

# Fit using REML, then full ML, then without fixed effects (division)
A6.reml <- lmer(Score ~ division + (1|school), data=Age6m, REML=TRUE)
A7.reml <- lmer(Score ~ division + (1|school), data=Age7m, REML=TRUE)
A8.reml <- lmer(Score ~ division + (1|school), data=Age8m, REML=TRUE)
A9.reml <- lmer(Score ~ division + (1|school), data=Age9m, REML=TRUE)
A6.full <- lmer(Score ~ division + (1|school), data=Age6m, REML=FALSE)
A7.full <- lmer(Score ~ division + (1|school), data=Age7m, REML=FALSE)
A8.full <- lmer(Score ~ division + (1|school), data=Age8m, REML=FALSE)
A9.full <- lmer(Score ~ division + (1|school), data=Age9m, REML=FALSE)
A6.noDiv <- lmer(Score ~ 1|school, data=Age6m, REML=FALSE)                # no fixed (division)
A7.noDiv <- lmer(Score ~ 1|school, data=Age7m, REML=FALSE)                # no fixed (division)
A8.noDiv <- lmer(Score ~ 1|school, data=Age8m, REML=FALSE)                # no fixed (division)
A9.noDiv <- lmer(Score ~ 1|school, data=Age9m, REML=FALSE)                # no fixed (division)

# Plot random effects (school contributions)
dotplot(ranef(A6.reml, postVar=TRUE), scales=list(cex=.6))
dotplot(ranef(A7.reml, postVar=TRUE), scales=list(cex=.6))
dotplot(ranef(A8.reml, postVar=TRUE), scales=list(cex=.6))
dotplot(ranef(A9.reml, postVar=TRUE), scales=list(cex=.6))

# LR tests for random effects (schools)
exactRLRT(A6.reml, nsim=100000)
exactRLRT(A7.reml, nsim=100000)
exactRLRT(A8.reml, nsim=100000)
exactRLRT(A9.reml, nsim=100000)

# Display empirical fixed effect (division) means
tapply(Age6m$Score, Age6m$division, mean)
tapply(Age7m$Score, Age7m$division, mean)
tapply(Age8m$Score, Age8m$division, mean)
tapply(Age9m$Score, Age9m$division, mean)

# ANOVA tests for fixed effects (division)
anova(A6.full, A6.noDiv)
anova(A7.full, A7.noDiv)
anova(A8.full, A8.noDiv)
anova(A9.full, A9.noDiv)

# Bayesian 95% CIs for fixed effects (division)
A6post <- mcmcsamp(A6.reml, 100000, withMCMC=TRUE)
A7post <- mcmcsamp(A7.reml, 100000, withMCMC=TRUE)
A8post <- mcmcsamp(A8.reml, 100000, withMCMC=TRUE)
A9post <- mcmcsamp(A9.reml, 100000, withMCMC=TRUE)
HPDinterval(A6post)
HPDinterval(A7post)
HPDinterval(A8post)
HPDinterval(A9post)

Age Analysis – Bayesian Confidence Intervals

# Calculate midpoints & standard errors for previously rendered Bayesian CIs
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B7E.m = (84.398 + 78.887)/2
B7E.s = (84.398 - 78.887)/(2 * 1.96)
B7J.m = (82.7468 + 69.701)/2
B7J.s = (82.7468 - 69.701)/(2 * 1.96)
B7S.m = (84.2668 + 70.047)/2
B7S.s = (84.2668 - 70.047)/(2 * 1.96)
B8E.m = (82.5266 + 77.782)/2
B8E.s = (82.5266 - 77.782)/(2 * 1.96)
B8J.m = (81.2561 + 69.68)/2
B8J.s = (81.2561 - 69.68)/(2 * 1.96)
B8S.m = (82.1106 + 69.589)/2
B8S.s = (82.1106 - 69.589)/(2 * 1.96)

# Test to see if 2007 Bayesian CI midpoints are significantly different at alpha=.05
  # Elementary vs Junior
  (2*sqrt(B7E.s^2 + B7J.s^2) < B7J.m - B7E.m) && (B7J.m - B7E.m < 2*B7J.s + 2*B7E.s)
  # Elementary vs Senior
  (2*sqrt(B7E.s^2 + B7S.s^2) < B7S.m - B7E.m) && (B7S.m - B7E.m < 2*B7S.s + 2*B7E.s)
  # Junior vs Senior
  (2*sqrt(B7J.s^2 + B7S.s^2) < B7S.m - B7J.m) && (B7S.m - B7J.m < 2*B7S.s + 2*B7J.s)

# Test to see if 2008 Bayesian CI midpoints are significantly different at alpha=.05
  # Elementary vs Junior
  (2*sqrt(B8E.s^2 + B8J.s^2) < B8J.m - B8E.m) && (B8J.m - B8E.m < 2*B8J.s + 2*B8E.s)
  # Elementary vs Senior
  (2*sqrt(B8E.s^2 + B8S.s^2) < B8S.m - B8E.m) && (B8S.m - B8E.m < 2*B8S.s + 2*B8E.s)
  # Junior vs Senior
  (2*sqrt(B8J.s^2 + B8S.s^2) < B8S.m - B8J.m) && (B8S.m - B8J.m < 2*B8S.s + 2*B8J.s)

Judge Deviation Analysis

Dev6 <- Dev2006[order(-Dev2006$AveDiff),]
Dev7 <- Dev2007[order(-Dev2007$AveDiff),]
Dev8 <- Dev2008[order(-Dev2008$AveDiff),]
Dev9 <- Dev2009[order(-Dev2009$AveDiff),]
rm(Dev2006,Dev2007,Dev2008,Dev2009)
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Fun Facts from Science Fair Projects

Corn grows better upside-down.

To get the most popped kernels, store your popcorn in the freezer.

Cheaper BBs seem to hit their targets more accurately than expensive BBs.

DVR technology like “TiVo” can be applied to a radio, which can then record and play back 

songs, skip commercials, etc.

Fast food not only makes rats lethargic, but smell worse too.

Soap and water work better than hand sanitizers.

Air fresheners facilitate the growth of bacteria in water.

There are junior high students who can decode the RSA encryption used by banks.

(Maybe that one isn't so fun.)



Science Fair “Fairness” 68

R e f e r e n c e s

Baayen, R. H. (2009). languageR (Version 0.955) [Software]. Available from http://cran.r-
project.org/web/packages/languageR/index.html

Bates, Douglas M. (2006, Oct. 20).  “[R] mcmcsamp - How does it work?” [Msg 2]. Message 
posted to http://n4.nabble.com/R-mcmcsamp-How-does-it-work-td810547.html#a810547

Bates, Douglas M., & Maechler, Martin (2010). lme4 (Version 0.999375-33) [Software]. 
Available from http://cran.r-project.org/web/packages/lme4/index.html

Cox, Jimmy (2007 October 31). http://www.articlexplosion.com/articledetail.php?
artid=31301&catid=159&title=A+History+of+Science+Fairs

Crocker, L., & Algina, J. (1986). Introduction to Classical and Modern Test Theory.  New York: 
Harcourt Brace Jovanovich.

Dallal, Gerard E. (2007). The Little Handbook of Statistical Practice. Retrieved from March, 
2010, from http://www.tufts.edu/~gdallal/LHSP.HTM

E. W. Scripps. (2009). In Wikipedia, the free encyclopedia. Retrieved February, 2009, from 
http://en.wikipedia.org/wiki/E._W._Scripps

Edward Willis Scripps. (2009). In Encyclopædia Britannica. Retrieved March 27, 2009, from 
Encyclopædia Britannica Online: 
http://www.britannica.com/EBchecked/topic/529991/Edward-Willis-Scripps

Fredrickson, Clifford T., & Mikkelson, Mary Domb (1979). The Science Fair: Making It Work, 
Making It Fair. The American Biology Teacher, 41(8), 449-550+504-505. 
http://www.jstor.org/stable/4446728

McBurney, Wendell F. (1978). The Science Fair: A Critique and Some Suggestions. The 
American Biology Teacher, 40(7), 419-422. http://www.jstor.org/stable/4446323

Pinheiro, José C., & Bates, Douglas M. (2002).  Mixed-Effects Models in S and S-PLUS.  New 
York: Springer-Verlag.

Scheipl, Fabian. (2010). RLRsim (Version 2.0-4) [Software]. Available from http://cran.r-
project.org/web/packages/RLRsim/index.html

http://www.jstor.org/stable/4446323
http://www.jstor.org/stable/4446728
http://www.britannica.com/EBchecked/topic/529991/Edward-Willis-Scripps
http://en.wikipedia.org/wiki/E._W._Scripps
http://www.articlexplosion.com/articledetail.php?artid=31301&catid=159&title=A+History+of+Science+Fairs
http://www.articlexplosion.com/articledetail.php?artid=31301&catid=159&title=A+History+of+Science+Fairs
http://n4.nabble.com/R-mcmcsamp-How-does-it-work-td810547.html#a810547


Science Fair “Fairness” 69

Scheipl, Fabian. (2010).  Exact (Restricted) Likelihood Ratio tests for mixed and additive 
models.  CRAN Repository. Retrieved February 12, 2010, from http://cran.r-
project.org/web/packages/RLRsim/RLRsim.pdf.

Science Fair. (2009). In Wikipedia, the free encyclopedia. Retrieved January, 2009, from 
http://en.wikipedia.org/wiki/Science_fair

“Science Fair History”  (2008, July-August). Copyright 2003-2009 Super Science Fair Projects 
– All Rights Reserved. http://www.super-science-fair-projects.com/science-fair-history.html

Smith, Carol L., Maclin, Deborah, Houghton, Carolyn, & Hennessey, M. Gertrude. (2000). 
Sixth-Grade Students' Epistemologies of Science: The Impact of School Science Experiences 
on Epistemological Development. Cognition and Instruction, 18 (3), 349-422.

Society for Science & the Public. (2009). History of Society for Science & the Public. 
Retrieved February, 2009, from http://sciserv.org/history.html

Twisk, Jos W. R. (2006) Applied Multilevel Analysis, Cambridge, UK : Cambridge University 
Press

William Emerson Ritter. (2009). In Wikipedia, the free encyclopedia. Retrieved February, 
2009, from http://en.wikipedia.org/wiki/William_Emerson_Ritter

http://en.wikipedia.org/wiki/William_Emerson_Ritter
http://sciserv.org/history.html
http://www.super-science-fair-projects.com/science-fair-history.html
http://search.eb.com/
http://cran.r-project.org/web/packages/RLRsim/RLRsim.pdf
http://cran.r-project.org/web/packages/RLRsim/RLRsim.pdf

	Introduction
	The Beginnings of Science Fairs
	Judging Science Fairs
	The SLVSEF

	Methods
	Data Description and Preparation
	Descriptions of Analyses

	Results
	Area of Expertise Data
	Education Level Data
	Age Data
	Judge Deviation Data

	Discussion
	Appendix
	Descriptive Statistics for Age Data
	Post hoc Power Calculations
	R Scripts
	Fun Facts from Science Fair Projects

	References

